

T1030(**E**)(M29)T

NATIONAL CERTIFICATE MATHEMATICS N5

(16030175)

29 March 2018 (X-Paper) 09:00–12:00

This question paper consists of 6 pages and a formula sheet of 5 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N5 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show ALL intermediate steps and simplify where possible.
- 5. ALL final answers must be rounded off to THREE decimal places.
- 6. Questions may be answered in any order, but subsections of questions must be kept together.
- 7. Questions must be answered in blue or black ink.
- 8. Work neatly.

1.1 Determine the following limit:

$$\lim_{x \to 0} \left(\frac{\arcsin 4x}{\arctan 5x} \right) \tag{3}$$

Given: $\ln y = \lim_{x\to 0} \frac{\int_0^x e^t dt}{x}$, calculate the numerical value of:

 $HINT: \int_0^x e^t dt = e^x - 1$

$$1.2.1 \qquad \ln y \tag{3}$$

$$1.2.2 y (1)$$

1.3 Determine the value(s) of x for which f(x) is discontinuous if:

$$f(x) = \frac{\sin 3x}{x^3 - 4x}$$
 (3)

QUESTION 2

Determine the derivative of $f(x) = \frac{-3}{x^{-7}}$ from first principles. (5)

2.2 Make a neat sketch of the graph
$$y = arc \tan x$$
 for the range $\left[\frac{\pi}{2}; \frac{3\pi}{2}\right]$. (2)

Calculate $\frac{dy}{dx}$ of the following, by making use of the derivatives of $\sin x$ and $\cos x$, as well as the rules of differentiation:

 $v = 10^{\log(\cot x)}$

$$HINT: a^{\log_a x} = x \tag{4}$$

2.4 Determine $\frac{dy}{dx}$ in each of the following cases:

(Simplification NOT required)

$$2.4.1 y = \sin(arc\sin x) - \pi^t (2)$$

$$2.4.2 y = \ln^3(\cos^{-1}x)^{(\cos x)^0} (4)$$

Calculate $\frac{dy}{dx}$ with the aid of logarithmic differentiation if $y = x^{\ln x}$. (4)

Determine
$$\frac{dy}{dx}$$
 of the implicit function $y \sin(x^2) = x \sin(y^2)$. (4)

3.1 Given:

$$f(x) = x^3 - 7x^2 + 8x - 3$$

- 3.1.1 Determine the coordinates of the turning points of f(x). (2)
- 3.1.2 Draw up a table of x and f(x), where x is ranging from x = -2 to x = 7. (2)
- 3.1.3 Draw a neat graph of f(x) between these values and show the turning points on it. (2)
- 3.1.4 One root of the equation $f(x) = x^3 7x^2 + 8x 3$ is close to 5.

Use this value and one approximation of Taylor's/Newton's method to determine a better approximation of this root (correct to THREE decimal figures).

(4)

- 3.2 A thin sheet of ice is in the form of a circle. If the ice is melting in such a way that the area of the sheet is decreasing at a rate of $0.5 \, m^2/s$ at what rate is the radius decreasing when the area of the sheet is $12 \, m^2$? (5)
- 3.3 A cylindrical can with bottom but no top with a volume of 30 cm³ must be constructed.

Determine the dimensions of the can that will minimise the amount of material needed to construct the can.

HINT:
$$V = \pi r^2 h$$
 and $A = 2\pi r h + \pi r^2$ (5) [20]

4.1 Determine $\int y \, dx$ in each of the following cases:

$$y = \frac{\sec^2 \pi x}{1 + \tan \pi x}$$
 (3)

4.1.2
$$y = \frac{x}{x+4}$$
 (3)

$$4.1.3 y = \frac{1}{5 + 25x^2} (2)$$

$$4.1.4 y = \cot^3 x (4)$$

$$4.1.5 y = \sqrt{x} \ln x (3)$$

4.2 Determine $\int y \, dx$ by resolving the integral into partial fractions:

$$\frac{3-x}{x^2-5x} \tag{5}$$

QUESTION 5

5.1 Evaluate the definite integral:

$$\int_0^1 \frac{x^2}{x^3 + 1} dx \tag{4}$$

5.2 Given:

$$y = x - 1$$
 and $y = (x - 1)^2$

- 5.2.1 Calculate the coordinates of the points of intersection. (2)
- 5.2.2 Make a neat sketch to show the enclosed area, the representative strip and the point of intersection. (2)
- 5.2.3 Calculate the magnitude of the area in QUESTION 5.2.2. (3)
- 5.2.4 Calculate the volume of the solid of revolution formed when the area in QUESTION 5.2.2 is rotated about the x-axis. (4)
- Calculate the second moment of area of a rectangular lamina with sides $8 \text{ cm} \times 4 \text{ cm}$ and about a 4 cm side. (4)

 [19]

6.1 Determine the particular solution of $x dy = y \ln y dx$, given x = 2 when y = e. (4)

Determine the general solution of $\frac{d^2y}{dx^2} = x^4 - \sin x$. (2)

TOTAL: 100

MATHEMATICS N5

FORMULA SHEET

Any other applicable formula may also be used.

Trigonometry

$$\sin^2 x + \cos^2 x = 1$$

$$1 + \tan^2 x = \sec^2 x$$

$$1 + \cot^2 x = \cos ec^2 x$$

$$\sin 2A = 2\sin A \cdot \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1-\tan^2 A}$$

$$\sin^2 A = \frac{1}{2} - \frac{1}{2}\cos 2A$$

$$\cos^2 A = \frac{1}{2} + \frac{1}{2}\cos 2A$$

$$\sin(A \pm B) = \sin A \cdot \cos B \pm \sin B \cdot \cos A$$

$$cos(A \pm B) = cos A.cos B \mp sin A.sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 - \tan A \cdot \tan B}$$

$$\sin A \cdot \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$

$$\cos A \cdot \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$$

$$\cos A.\cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

$$\sin A \cdot \sin B = \frac{1}{2} [\cos(A - B) - \cos(A + B)]$$

$$\tan x = \frac{\sin x}{\cos x}; \sin x = \frac{1}{\cos ecx}; \cos x = \frac{1}{\sec x}$$

Copyright reserved

BINOMIAL THEOREM

$$(x+h)^n = x^n + n \cdot x^{n-1}h + \frac{n(n-1)}{2!}x^{n-2}h^2 + \dots$$

DIFFERENTIATION

$$e = -\frac{f(a)}{f'(a)}$$

r = a + e

PRODUCT RULE

$$y = u(x).v(x)$$

$$\frac{dy}{dx} = u.\frac{dv}{dx} + v.\frac{du}{dx}$$

= u.v' + v.u'

QUOTIENT RULE

$$y = \frac{u(x)}{v(x)}$$

$$\frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2}$$

$$=\frac{v.u'-u.v'}{v^2}$$

CHAIN RULE

$$y = f(u(x))$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$\frac{d}{dx}f(x)$$

$$\int f(x)dx$$

	n_1	ax^{n+1}
ax^n	nax^{n-1}	$\frac{ax^{n+1}}{n+1} + c$
а	0	ax + c
e^x	e^x	$e^x + c$
a^{x}	a^x . ln a	
		$\frac{a^x}{\ln a} + c$
$\log_e x$	$\frac{1}{x}$	m u
$\log_a x$	1	
	$x \ln a$	
$\sin x$	cos x	$-\cos x + c$
$\cos x$	$-\sin x$	$\sin x + c$
tan x	$\sec^2 x$	$ln(\sec x) + c$
cot x	$-\cos ec^2x$	$\ln(\sin x) + c$
sec x	sec x.tan.	$\ln[\sec x + \tan x] + c$
cos ecx	$-\cos ecx.\cot x$	$\ln[\cos ecx - \cot x] + c$
$\sin^{-1} x$ $\cos^{-1} x$ $\tan^{-1} x$	$ \frac{1}{\sqrt{1-x^2}} $ $ \frac{-1}{\sqrt{1-x^2}} $ $ \frac{1}{1+x^2} $ $ \frac{-1}{1+x^2} $	_ _ _
$\cot^{-1} x$	1	_
$\sec^{-1} x$	$\sqrt{x\sqrt{x^2-1}}$	
$\cos ec^{-1}x$	$\frac{-1}{x\sqrt{x^2-1}}$	 -
f(x)	$\frac{d}{dx}f(x)$	$\int f(x)dx$

$$\frac{1}{\sqrt{a^{2}-x^{2}}} \qquad \qquad - \qquad \frac{\sin^{-1}(\frac{x}{a})+c}{a} \\
\frac{1}{a^{2}+x^{2}} \qquad \qquad - \qquad \frac{1}{a}\tan^{-1}(\frac{x}{a})+c \\
\frac{1}{x\sqrt{x^{2}-a^{2}}} \qquad \qquad - \qquad \frac{1}{a}\sec^{-1}(\frac{x}{a})+c \\
\sqrt{a^{2}-x^{2}} \qquad \qquad - \qquad \frac{a^{2}}{2}\sin^{-1}(\frac{x}{a})+\frac{x}{2}\sqrt{a^{2}-x^{2}}+c \\
\frac{1}{x^{2}-a^{2}} \qquad \qquad - \qquad \frac{1}{2a}\ln(\frac{x-a}{x+a})+c \\
\frac{1}{2a}\ln(\frac{a+x}{a-x})+c$$

INTEGRATION

$$\int f(x).g'(x) = f(x).g(x) - \int f'(x).g(x)dx$$

$$\int \frac{f'(x)}{f(x)} dx = \ln f(x) + c$$

$$\int [f(x)]^n \cdot f'(x) dx = \frac{f(x)^{n+1}}{n+1} + c$$

$$\frac{f(x)}{(ax+b)(cx+d)} = \frac{A}{ax+b} + \frac{B}{cx+d}$$

$$\frac{f(x)}{(x+a)^n} = \frac{A}{(x+a)} + \frac{B}{(x+a)^2} + \frac{C}{(x+a)^3} + \dots + \frac{Z}{(x+a)^n}$$

Applications of integration

AREAS

$$A_x = \int_a^b y dx; \ A_x = \int_a^b (y_2 - y_1) dx$$

$$A_{y} = \int_{a}^{b} x dy; \quad A_{y} = \int_{a}^{b} (x_{2} - x_{1}) dy$$

VOLUMES

$$V_x = \pi \int_a^b y^2 dx; \ V_x = \pi \int_a^b (y_2^2 - y_1^2) dx$$

$$V_y = \pi \int_a^b x^2 dy; \quad V_y = \pi \int_a^b (x_2^2 - x_1^2) dy$$

SECOND MOMENT OFAREA

$$I_x = \int_a^b r^2 dA; \quad I_y = \int_a^b r^2 dA$$

MOMENTS OF INERTIA

Mass = density x volume/Massa = digtheid x volume

M = pV

Definition: $I = mr^2$

General: $I = \int_a^b r^2 dm = p \int_a^b r^2 dV$