

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE

MATHEMATICS N4

(16030164)

6 April 2021 (X-Paper) 09:00–12:00

Scientific calculators may be used.

This question paper consists of 5 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA NATIONAL CERTIFICATE

MATHEMATICS N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer all the questions.
- 2. Read all the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show all intermediate steps and simplify where possible.
- 5. All final answers must be rounded off to three decimal places (unless indicated otherwise).
- 6. Questions may be answered in any order, but subsections of questions must be kept together.
- 7. Draw all graphs large, clear and neat and they may be done in pencil.
- 8. Use only a blue or black pen.
- 9. Write neatly and legibly.

-3-

QUESTION 1

1.1	Sketch the graph of $x = \frac{-8}{y}$. (2)			
1.2	Sketch the	graph of $y = -\sqrt{3 - x^2}$	(2)	
1.3	1.3.1	Draw the inverse of the graph in QUESTION 1.2 and state whether it is a <i>function</i> or a <i>relation</i> .	(3)	
	1.3.2	Is the inverse of $y = -\sqrt{3 - x^2}$ continuous or discontinuous?	(1)	
1.4	Given: $Z = (3 - 4j)^3$			
	Convert Z	to polar form. θ may always be positive.	(6)	
1.5	Solve for x and y simultaneously using complex numbers if:			
	$x - jy = \frac{7}{1}$	$\frac{-j^9}{-j}$	(5)	
1.6	Evaluate:	$j^9 - j^2$	(1) [20]	
QUESTION 2				

()

- 2.1 If $8\sin\theta + 5 = 0$, determine the value of: $\cos^2\theta + \tan\theta \cdot \cos\theta$ without using a calculator.
- 2.2 Prove that: $\cot(90^{\circ} + \theta) = -\tan\theta$
- 2.3 Simplify as far as possible:

 $\frac{\sin x + \tan x}{\cos ecx + \cot x}$

2.4 Prove the following identity:

$$\frac{\sec\theta + \tan\theta}{\cos\theta} = \frac{1}{1 - \sin\theta}$$

2.5 Solve for
$$\alpha : \sec\left(\frac{\alpha}{2} + 5^0\right) = -\cos ec(20^0 - \alpha)$$
, for $0^0 \le \alpha \le 90^0$

(5 × 4) **[20]**

QUESTION 3

3.1	Differentiate: $y = \sqrt{\sec x}$ using the chain rule (function of function).	(4)
-----	---	-----

3.2 Differentiate the following expression:

$$y = \frac{\sin 2x + 1}{\cos x} + \frac{e^{7x}}{14} - 2^x + \frac{\pi^{3x}}{4} - 2B + \frac{1}{2}\ln x \tag{7}$$

- 3.3 Differentiate from first principle if given: $y = 5x^5 - 2x$
- 3.4 Given: $y = x^3 12x^2 + 16x 12$

Determine the coordinate of the points of inflection using the second derivative.	(4)
	[20]

QUESTION 4

4.1 Solve for x if : $3^{x+2} = \ln 19$	(3)
---	-----

4.2 Given: 3x + 4y - 6 = 0 and x = 2y - 3

Solve for x and y using Cramer's rule.

4.3 Given:

()

- 4.3.1 Write down and determine the minor of element 7.
- 4.3.2 Write down and determine the cofactor of element -1. (2×2) (4)
- 4.4 A quarter of the sum of two numbers is 4. Four times the difference between the two is -64.

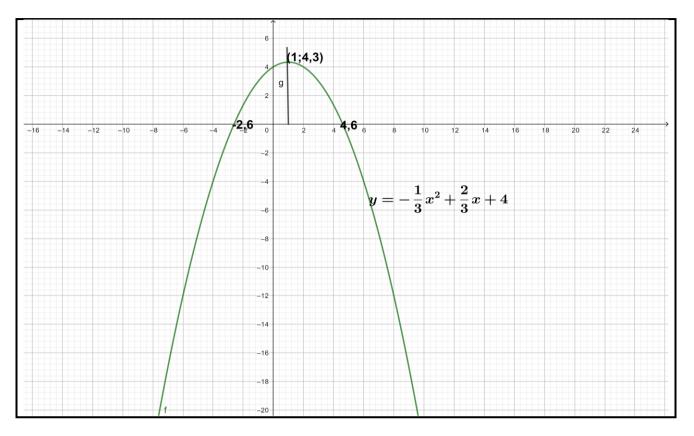
Ш.

Calculate the two numbers.

4.5 Given:
$$P = \frac{DB}{C} \ln\left(\frac{N}{R}\right)$$

Make *N* the subject of the formula.

(5)


(5)

(5)

-5-

QUESTION 5

5.1 Given:

- 5.1.1 Redraw the sketch in the ANSWER BOOK and clearly indicate the area enclosed by the graph: $y = -\frac{1}{3}x^2 + \frac{2}{3}x + 4$, x = 1 and x = 4,6. Also indicate the representative strip used to calculate the indicated area. (2)
- 5.1.2 Calculate, using integration, the magnitude of the area indicated in QUESTION 5.1.1. (5)

5.2 Integrate the following:

$$\int \left(4\pi^{3x} - \frac{5\pi}{x} + \tan x \cdot \sec x - \cos ec^2 3x + \frac{1}{e^{3x}} + 5^{-7x} + p\right) dx$$
(7)

5.4 Simplify:
$$\int (-\cos ecx \cdot \cot x - (-\cos ec^2 x)) dx$$
 (3)

[20]

TOTAL: 100

5.3

MATHEMATICS N4

FORMULA SHEET

NEW SYLLABUS

$$a^x = b \Leftrightarrow \log a^x = \log b$$

 $\tan(a\pm b) = \frac{\tan a \pm \tan b}{1\mp \tan a \tan b}$

$$(r|\underline{\theta})^n = r^n |\underline{n\theta} \qquad a+bj = c+dj \Leftrightarrow a = candb = d$$

 $\sin(a\pm b) = \sin a \cos b \pm \sin b \cos a$ $\cos(a\pm b) = \cos a \cos \mp \sin a \sin b$

 $\sin^2 x + \cos^2 x = 1$ $1 + \cot^2 x = \cos ec^2 x$ $1 + \tan^2 x = \sec^2 x$

 $\ln x = \log_e x$

у	dy
	\overline{dx}
an ⁿ	nax^{n-1}
ka^{x}	$ka^x \ln a$
$k \ln x$	<u>k</u>
	$\frac{-}{x}$
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
tan x	$\sec^2 x$
$\cot x$	$-\cos ec^2 x$
sec x	$\sec x \tan x$
cos ecx	$-\cos ecx \cot x$

$$\int ax^{n} dx = \frac{ax^{n+1}}{n+1} + C$$
$$\int \frac{a}{x} dx = a\ell nx + c$$
$$\int ka^{x} dx = \frac{ka^{x}}{\ell na} + c$$
$$A_{ox} = \int_{a}^{b} y dx$$

$$y = u(x) \cdot v(x)$$

$$\Rightarrow \frac{dy}{dx} = u(x)v^{1}(x) + u^{1}(x)v(x)$$

$$y = \frac{u(x)}{v(x)}$$

$$\Rightarrow \frac{dy}{dx} = \frac{v(x)u^{1}(x) - u(x)v^{1}(x)}{[v(x)]^{2}}$$

$$\frac{dy}{dx} = \frac{dy}{du}x\frac{du}{dx}$$

$$\int \sin x dx = -\cos x + c$$

$$\int \cos x dx = \sin x + c$$

$$\int \tan x dx = \ln \sec x + c$$

$$\int \sec x dx = \ln(\sec x + \tan x) + c$$

$$A_{m} = \int_{a}^{b} v dx$$