

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T960(E)(A7)T APRIL EXAMINATION

NATIONAL CERTIFICATE

MATHEMATICS N4

(16030164)

7 April 2016 (X-Paper) 09:00–12:00

Scientific calculators may be used.

This question paper consists of 5 pages and 1 formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE MATHEMATICS N4 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Show ALL intermediate steps and simplify where possible.
- 5. ALL final answers must be rounded off to THREE decimal places (unless indicated otherwise).
- 6. Questions may be answered in any order, but subsections of questions must be kept together.
- 7. Use only BLUE or BLACK ink.
- 8. Write neatly and legibly.

(16030164)

-3-

QUESTION 1

1.1	1.1.1	Draw the graph of $y = 2\cos ecx$, $0^0 \le x \le 2\pi$	(3)
	1.1.2	Is the graph of $y = 2\cos ecx$ in QUESTION 1.1.1 above a function or a relation?	(1)
	1.1.3	Is the graph of $y = 2\cos ecx$ in QUESTION 1.1.1 above symmetrical or asymmetrical about the X-axis?	(1)
1.2	1.2.1	Draw the graph of the inverse of $y = 11^x$	(3)
	1.2.2	What is the domain of the graph of the inverse of $y=11^x$ in QUESTION 1.2.1 above?	(2)
1.3	Given: a+b=	c+3	
	2a+c=	3-b	
	$-b-\frac{c}{2}=$	-a	
	2 Solve the	value of 'a' by using Cramer's rule only.	(8)
1.4	Given:		
	$\begin{vmatrix} \frac{1}{2} & 0 \end{vmatrix}$		
	$-1 \frac{1}{3}$		
	Calculate	the value of the determinant.	(2) [20]
OUES	TION 2		
QUES			
2.1	Calculate	the value of $\sin 2A$ if $\cos A = \frac{24}{25}$ and A is in the first quadrant.	(3)
2.2	Solve for	the value of 'A' if:	
	$5\cos 2A$ -	$+4 = 3\cos A; 0^0 \le A \le 180^0$	(5)
2.3	Prove that	t:	
	$\frac{2\sin A}{\cos A + \sin A}$	$\frac{+1}{\ln 2A} = \sec A$	(3)

Please turn over

-4-

(3) [20]

(5)

(3)

(3)

(4)

(3)

2.4 Simplify:

$$\frac{\sin(180^{\circ} - a)\tan(180^{\circ} + a)\sin(90^{\circ} + a)}{\tan(180^{\circ} + a)\cos(-a)\sin(-a)}$$
(2)

2.5 If $\cos x = \frac{3}{5}$ and $\sin y = \frac{12}{13}$ and both 'x' and 'y' are acute angles, determine without the use of a calculator the value of $\cos(x - y)$. (4)

2.6 Prove that:

 $\sqrt{2 + 2\cos 2A} = 2\cos A$

QUESTION 3

3.1 The perimeter of a field in the form of a right-angled triangle is 60 m. The length of the hypotenuse is 25 m.

Calculate the lengths of the other two sides.

3.2 Solve for 'x' if:

 $4.4^{x} = 29$

3.3 Make 'c' the subject of the formula if:

$$i = I_0 \left(1 - e^{-\frac{t}{Rc}} \right)$$

3.4 Solve for 'x' if:

$$x + \frac{7}{x} + 5 = 0$$

3.5 Rationalise:

$$\frac{1}{\cos\theta - j\sin\theta}$$

3.6 Given:

z = 3 - j6

Convert \overline{z} into polar form.	The argument may only be positive.	(2)
		[20]

T960(E)(A7)T

(7)

(4) [**20**]

(3)

(3)

QUESTION 4

4.1 Determine the following limit:

$$\lim_{x \to \frac{1}{2} \left(\frac{x^3 - x}{x^3 - 1} \right)} \tag{4}$$

4.2 Given:

$$y = (x-1)(x+5)^2$$

Calculate, using differentiation, the co-ordinates of the maximum and minimum turning points.

4.3 Differentiate with regard to 'x':

$$y = -2\cot x + \ln x^{6} - \frac{3}{\cos x} + e^{\pi} - \frac{2}{x}$$
(5)

- 4.4 Use the quotient rule to differentiate the following:
 - $y = \frac{\sqrt{x}}{x+4}$

QUESTION 5

5.1 Simplify:

$$\int \left(\cos^2 A - \sin^2 A\right) dA$$

5.2 Evaluate:

$$\int_{2}^{4} \left(\ln 3 - \frac{1}{x} \right) dx$$

- 5.3 5.3.1 Sketch and indicate clearly the area enclosed by the graph of $y = x^2 + 2$, x = 0 and x = 2. Also indicate the representative strip used to calculate the indicated area. (3)
 - 5.3.2 Calculate, using integration, the magnitude of the area indicated in QUESTION 5.3.1 above. (4)

5.4 Integrate:

$$\int \left(\frac{\sin 2x}{\cos x} - \frac{2}{\sqrt{x}} - 3 + \frac{1}{a} - 3\cos\frac{x}{3} - 3^{-4x}\right) dx \tag{7}$$

[20]

TOTAL: 100

FORMULA SHEET

MATHEMATICS N4

$a^x = b \Leftrightarrow \log a$	$a^x = \log b$	$\ell n x = \log_{ex}$					
$(r \underline{\theta})^n = r^n \underline{n\theta} a + bj = c + dj \iff a = c \text{ and } b = d$							
$\sin(a \pm b) = \sin a$ $\cos(a \pm b) = \cos a$	$a \cos b \pm \sin b \cos a$ $a \cos b \mp \sin a \sin b$	$sin^{2}x + cos^{2}x = 1$ $1 + cot^{2}x = cosec^{2}x$ $1 + tan^{2}x = sec^{2}x$					
$\tan\left(a\pm b\right)=\frac{ta}{l}$	$\frac{\tan a \pm \tan b}{\mp \tan a \ \tan b}$						
У	$\frac{dy}{dx}$						
ax ⁿ	nax ⁿ⁻¹	$y = u(x) \cdot v(x)$					
ka ^x	$ka^{x}\ell na$	$\Rightarrow dy u(x)v^1(x) + u^1(x)v(x)$					
klnx	<u>k</u>	$\Rightarrow \frac{dx}{dx} u(x) v(x) + u(x) v(x)$					
$\sin x$	$x \cos x$	$v = \frac{u(x)}{x}$					
$\cos x$	$-\sin x$	v(x)					
tan <i>x</i>	$\sec^2 x$	$dy = y(x)y^{1}(x) = y(x)y^{1}(x)$					
$\cot x$	$-\cos e^2 x$	$\Rightarrow \frac{dy}{dx} = \frac{v(x)u(x) - u(x)v(x)}{[v(x)]^2}$					
sec x	sec x tan x						
cosec x	$-\operatorname{cosec} x \operatorname{cot} x$	$\frac{dy}{dt} = \frac{dy}{dt} \times \frac{du}{dt}$					
		$\int dx du dx$					
<i>n</i> +	1						
$\int ax^n dx = \frac{dx}{n+1}$	-+C	$\int \sin x dx = -\cos x + c$					
1 1 1							
$\int \frac{a}{dx} = a\ell nx + d\ell nx +$	С						
$\int x$		$\int \cos x dx = \sin x + c$					
ka^x							
$\int ka^{*}dx = \frac{dx}{\ell na}$	+ <i>c</i>	$\int \tan x dx = \ell \operatorname{nsec} x + c$					
b 1 _ ∫		$\int \sec x dx = \ln(\sec x + \tan x) + c$					
$A_{ox} = \int_{u} y dx$							