higher education \& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE

ENGINEERING SCIENCE N4

6 April 2020

This marking guideline consists of 12 pages.

SECTION A: GENERAL

QUESTION 1

1.1 In a frictionless open environment, when a baseball is hit or is moving at $20 \mathrm{~m} / \mathrm{s}$, it will keep on moving at $20 \mathrm{~m} / \mathrm{s}$ for ever, unless it hits an object on its path and then reduces its velocity or ricochets back.

OR
When a ball hits a stationery object on a table, it will never change its position unless something moves it.

OR
A motional marble comes to rest because of the friction which opposes its motion/If the friction is completely eliminated then the marble will preserve its state of motion.

OR
An object thrown vertically upwards gets retarded and momentarily comes to rest at a certain height above the ground due to the force of gravity which opposes its motion. If the gravity is eliminated then the body preserves its state of uniform motion.
(Any 1×2)
1.2 1.2.1 Rate of angular velocity measured in rad/s
1.2.2 Reaction on a material due to external force

$$
\begin{equation*}
(2 \times 2) \tag{4}
\end{equation*}
$$

1.3 1.3.1 $\beta=2 \alpha$

$$
\begin{equation*}
\gamma=3 \alpha \tag{2}
\end{equation*}
$$

1.3.2 $\quad \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
1.4 At a constant temperature the pressure of gas is inversely proportional to the volume.

QUESTION 2

2.1 D
2.2 2.2.1 A
2.2.2 A
2.3 A
2.4 D
2.5 C
2.6 D
2.7 D
2.8 C
2.9 B

SECTION B

QUESTION 3

3.1

$$
\begin{align*}
& \mathrm{S}_{\mathrm{h}}=55 \mathrm{~km} \\
& \mathrm{U}=520 \mathrm{~km} / \mathrm{h} \\
& \theta=50^{\circ} \\
& u=520 \mathrm{~km} / \mathrm{h} \\
& =144,444 \mathrm{~m} / \mathrm{s} \quad \\
& \theta=50^{\circ} \\
& S_{h}=u \cdot t \cos \theta \\
& \mathrm{t}=\frac{S_{h}}{u \cdot \cos \theta} \\
& =\frac{55000}{144,444, \cos 50} \\
& =592,375 \mathrm{~s} \\
& =9,873 \text { minutes } \checkmark \tag{4}
\end{align*}
$$

$3.2 V_{p}=250 \mathrm{~km} / \mathrm{h} \quad \mathrm{E}$
$V_{Q}=210 \mathrm{~km} / \mathrm{h} W 53^{\circ} \mathrm{S}$

$$
C=37^{\circ}+90^{\circ}
$$

$$
=127^{\circ}
$$

$$
c=\sqrt{210^{2}+250^{2}-2(210) \cdot(250) \cos 127}
$$

$$
=412,057 \mathrm{~km} / \mathrm{h}
$$

$$
\frac{\sin B}{b}=\frac{\sin C}{c}
$$

$B=\sin ^{-1} \frac{\text { b. } \sin C}{c}$
$=\sin ^{-1} \frac{(210) \cdot \sin 127^{\circ}}{412,057} \checkmark$
$=24,018^{\circ}$
$\mathrm{P} \mathrm{Q}_{\mathrm{Q}}=412,057 \mathrm{~km} / \mathrm{h} W 24,018^{\circ} \mathrm{S}$

QUESTION 4

$4.1 \quad \mathrm{~V} 280 \mathrm{~km} / \mathrm{h}$
$\mathrm{d}=720 \mathrm{~mm}$
$v=\pi D n$
$n=\frac{v}{\pi D}$
$n=\frac{77,7778 \mathrm{~m} / \mathrm{s}}{\pi(0,72)}$
$=34,385 \quad \checkmark$
$\mathrm{N}=2063,12 \mathrm{rev} / \mathrm{min} \checkmark$
ALTERNATIVE

$$
\begin{align*}
& v=\omega R \\
& \omega=\frac{v}{R} \\
& \omega=\frac{77,7778 \mathrm{~m} / \mathrm{s}}{0.36 \mathrm{~m}} \\
& =216,0493833 \mathrm{rad} / \mathrm{s} \checkmark \\
& N=\frac{216,0493}{2 \pi} \\
& \mathrm{~N}=2063,12 \mathrm{rev} / \mathrm{min} \checkmark \tag{2}
\end{align*}
$$

4.2 $\quad 4.2 .1 \quad N_{1}=444 \mathrm{rev} / \mathrm{min}$

$$
\mathrm{N}_{2}=2840 \mathrm{rev} / \mathrm{min}
$$

$$
t=0,58 \mathrm{~min}
$$

$$
\omega_{1}=444 \mathrm{rev} / \min \frac{2 \pi}{60}
$$

$$
=46,49558 \mathrm{rad} / \mathrm{s}
$$

$$
\omega_{2}=2840 \mathrm{rev} / \min \frac{2 \pi}{60}
$$

$$
=297,40410445 \mathrm{rad} / \mathrm{s} \checkmark
$$

$$
\omega_{2}=\omega_{1}+\alpha . t
$$

$$
\alpha=\frac{\omega_{2}-\omega_{1}}{t}
$$

$$
=\frac{297,40410-47,9558}{34,8}
$$

$$
\begin{equation*}
=7,210 \mathrm{rad} / \mathrm{s}^{2} \checkmark \tag{3}
\end{equation*}
$$

4.2.2

$$
\begin{align*}
& \mathrm{n} \\
& \omega_{2}^{2}=\omega_{1}^{2}+2 \alpha \theta \\
& \theta=\frac{\omega_{2}^{2}-\omega_{1}^{2}}{2 \alpha} \\
& \theta=\frac{297,4041^{2}-46,49558^{2}}{2(7,21)} \\
& =17,400 \mathrm{rad} \\
& n=\frac{\theta}{2 \pi} \\
& n=\frac{\theta 17,400}{2 \pi} \\
& =2,769 \tag{3}
\end{align*}
$$

QUESTION 5

$5.1 \mathrm{~m}=980 \mathrm{~kg}$
slope $1: 45$
$\mathrm{u}=6 \mathrm{~m} / \mathrm{s}$
$\mathrm{v}=21 \mathrm{~m} / \mathrm{s}$
$f_{u}=0,459 \mathrm{~N} / \mathrm{kg}$
$\mathrm{t}=35 \mathrm{~s}$
$f_{u}=0,459 \mathrm{~N} / \mathrm{kg}$
A
$v=u+a . t$
$a=\frac{v-u}{t}$
$={\frac{21-6}{}{ }^{t}}^{35} \checkmark$
$=0,42857 \mathrm{~m} / \mathrm{s}^{2} \checkmark$
$5.2 \quad f_{a}=m a$
$=980(0,42857) \checkmark$
$=420 \mathrm{~N}$ V
$5.3 \quad f_{a}=420 \mathrm{~N}$
$f_{u}=0,459(980)$
$=449,82 N$
$\theta=\sin ^{-1}\left(\frac{1}{45}\right)$
$=1,2739^{\circ}$
$f_{p}=980(9,8) \sin 1,2739^{\circ}$
$=213,4222 \mathrm{~N} \checkmark$
$f_{\text {tot }}=f_{p}+f_{u}+f_{a}$
$f_{\text {tot }}=213,4222 N+449,82 N+420 N \checkmark$
$=1083,242 \mathrm{~N} \checkmark$
[8]

QUESTION 6

6.1
6.1.1

6.1.2

6.1.3
$B M_{C} \approx 195,5(5)-50(5) \cdot \frac{5}{2}=350 \mathrm{Nm} \quad \checkmark$
$B M_{D} \approx 195,5(8)-50(5)(5,5)-40(0)=189 \mathrm{Mm} \checkmark$
$\sum F_{\cdot E}=0$
$195,5 \mathrm{~N}-50 \mathrm{~N} / \mathrm{m} . x=0$
$x=\frac{-195,5 \mathrm{~N}}{-50 \mathrm{~N} / \mathrm{m}}$
$=3,91 \mathrm{~m}$
$B M_{E} \approx 195,5(3,91)-50(3,91) \cdot \frac{3,91}{2}=-305,958 \mathrm{Nm}$
6.1.4

6.2

Shape	Area (cm ${ }^{2}$)	Centroid (cm)	AC (cm ${ }^{3}$)
Rectangle	$\begin{aligned} \mathrm{L}(\mathrm{~b}) & =60(50) \\ & =3000 \mathrm{~V} \end{aligned}$	60/2=30 J	$\begin{aligned} & 3000(30) \\ & =90000 \end{aligned}$
triangle/ hole	$\begin{aligned} & 0,5(12) 18 \\ & =108 \sqrt{ } \\ & \hline \end{aligned}$	$\begin{aligned} & 23+12 / 3 \\ & =27 \sqrt{ } \end{aligned}$	$\begin{array}{\|l} \hline 108(27) \\ =2916 \mathrm{~V} \end{array}$
	$\begin{aligned} & \sum_{3000-108} A_{1}-\sum A_{2} \\ & 2892 \sqrt{ } \end{aligned}$		$\begin{aligned} & \sum_{90000-2916} A C_{1}-\sum A C_{2} \\ & =87084 \mathrm{~V} \end{aligned}$
		$\begin{align*} & y=\frac{87084}{2892} \\ & =30,112 \mathrm{~cm} \checkmark \tag{5} \end{align*}$	

SECTION C

QUESTION 7

7.1 $D=50 \mathrm{~m}$
$\mathrm{h}=28 \mathrm{~m}$
$\mathrm{P}=250 \mathrm{kPa}$
7.1.1 W

$$
\begin{aligned}
V & =\pi \frac{D^{2}}{4} \cdot h \\
& =\pi \frac{50^{2}}{4} \cdot 28 \\
& =54977,87144 m^{3}
\end{aligned}
$$

$W=(250000) 54977,87144 m^{3} \checkmark$
$=1,374446786 \times 10^{10} \mathrm{~J}$
$=13744,468 \mathrm{MJ}$
7.1.2 $t, P=840$ kW
$P=\frac{W}{t}$
$t=\frac{W}{P}$
$t=\frac{13744,46787 \times 10^{6} W}{840000 \mathrm{P} a}$,
$=16362,46174 \mathrm{~s}$
$=4,545$ hours \checkmark
7.2 3d

$$
\begin{aligned}
& =\mathrm{D} \\
& \mathrm{~S}_{1}=110 \mathrm{~mm} \\
& \mathrm{MA}=22
\end{aligned}
$$

$$
\mathrm{F}_{\mathrm{h}, \mathrm{~m}}=2,2 \mathrm{Mg} \quad \eta=91 \%
$$

$$
W_{R}=(2200) \cdot(9.8)
$$

$$
=21560 \mathrm{~N}
$$

$$
M A=\frac{f_{p}}{f_{h}} \cdot \frac{100}{\eta} \quad \frac{W_{R}}{f_{p}}=\frac{D^{2}}{d^{2}}
$$

$$
f_{p}=\frac{W_{R} d^{2}}{D^{2}}
$$

$$
f_{p}=\frac{21560\left(d^{2}\right)}{(3 d)^{2}}
$$

$$
=2395.556 \mathrm{~N}
$$

$$
f_{h}=\frac{f_{p}}{M A} \cdot \frac{100}{\eta}
$$

$$
f_{h}=\frac{2395.556}{22} \cdot \frac{100}{91}
$$

$$
\begin{equation*}
=119.658 \mathrm{~N} \checkmark \tag{5}
\end{equation*}
$$

7.3 C $=2$
$\mathrm{d}=70 \mathrm{~mm}$
$S_{I}=150 \mathrm{~mm}$
$V_{a}=0,027 \mathrm{I} / \mathrm{s}$
$\eta=94 \%$
$V_{s}=V_{a} \cdot \frac{100}{\eta}$
$V_{s}=0.027 \cdot \frac{100}{94}$
$=0.028723404 l / s \quad \checkmark$
$V_{s}=\frac{\pi\left(d^{2}\right) S_{l} \cdot n}{4}$
$\frac{\pi\left(d^{2}\right) S_{l} \cdot n . c}{4} \frac{N}{60}=0.028723404 l / s$
$\frac{\pi\left(0.07^{2}\right) \cdot(0.15) \cdot 1.2}{4} \frac{N}{60}=0.028723404 l / s \checkmark$
$N=\frac{0.028723404}{0.000019242}$
$=1492,725 \mathrm{rev} / \mathrm{s} \checkmark$
$=24,879 \mathrm{rev} / \mathrm{min} \checkmark$

QUESTION 8: STRESS, STRAIN, AND YOUNG'S MODULUS OF ELASTICITY

$8.1 \mathrm{~d}=32 \mathrm{~mm}$
I = 820 mm
$\mathrm{F}=52,332 \mathrm{kN}$
$\Delta l=0,621 \mathrm{~mm}$
8.1.1 $\quad \delta=\frac{f}{a}$

$$
\begin{aligned}
& a=\frac{\pi d^{2}}{4} \\
& =\frac{\pi 0,032^{2}}{4}
\end{aligned}
$$

$$
=0,000804247 \mathrm{~m}^{2} \checkmark
$$

$$
\delta=\frac{52332 J}{0,000804247} \checkmark
$$

$$
\begin{equation*}
=65,070 \mathrm{MPa} \checkmark \tag{3}
\end{equation*}
$$

8.1.2

$$
\begin{align*}
& \mathrm{E}=\frac{\Delta l}{l} \\
& =\frac{0,621}{820} \checkmark \\
& =7,57317 \times 10^{-4} \\
& =7,573 \times 10^{-4} \checkmark \tag{2}
\end{align*}
$$

8.1.3

$$
\begin{align*}
& E=\frac{\delta}{\varepsilon} \\
& =\frac{65,070 \times 10^{6}}{7,57317 \times 10^{-4}} \checkmark \\
& =8,592174 \times 10^{10} \\
& =85,922 G P a \tag{2}
\end{align*}
$$

8.2 m =1,8 ton
$\mathrm{d}=5 \mathrm{~mm}$
$\mathrm{l}=50 \mathrm{~m}$
$\Delta l=8 \mathrm{~mm}$

$$
\begin{aligned}
& a=\frac{\pi d^{2}}{4} \\
& =\frac{\pi 0,05^{2}}{4} \\
& =0,001963495 \mathrm{~m}^{2} \\
& \delta=\frac{517640 \mathrm{~N}}{0,001963495 \mathrm{~m}^{2}} \\
& =8983978,228 \mathrm{~Pa} \\
& \mathrm{E}=\frac{\Delta l}{l} \\
& =\frac{0,08 \mathrm{~mm}}{50} \\
& =0,0016 \\
& E=\frac{\delta}{\varepsilon} \\
& =\frac{8983978,228 P a}{0,0016} \\
& =5614986393 \mathrm{~Pa} \\
& =5,615 \mathrm{GPa} \checkmark
\end{aligned}
$$

ALTERNATIVE

$E=\frac{f . L}{a . \Delta l}$
$E=\frac{17640 N(50)}{0,001963495 .(0,08)} \checkmark \checkmark$
$=5,615 \mathrm{GPa} \checkmark$

QUESTION 9

9.1 Dimensions: $500 \mathrm{~mm} \times 200 \mathrm{~mm} \times 600 \mathrm{~mm}$
$t=20^{\circ} \mathrm{C}$
$\Delta t=245^{\circ} \mathrm{C}$
$\alpha=12,5 \times 10^{-6} / K$
9.1.1 Δl

$$
\begin{align*}
& \Delta l=l_{0} \alpha \Delta T \\
& =0,6\left(12,5 \times 10^{-6}\right) 518 \mathrm{~K} \checkmark \\
& =0,003885 \mathrm{~m} \checkmark \tag{2}
\end{align*}
$$

9.1.2 $\Delta V=3 . V_{0} . \propto \Delta t$

$$
\begin{align*}
& V_{o}=0,5(0,2) \cdot(0,6) \\
& \Delta V=3 \cdot V_{o} \cdot \propto \Delta t \\
& =3(0,06) \cdot\left(12,5 \times 10^{-6}\right) 518 \mathrm{~K} \\
& =0,0011655 \mathrm{~m}^{3} \\
& =1,167 \times 10^{-3} \mathrm{~m}^{3} \tag{3}
\end{align*}
$$

9.2

$$
\begin{array}{ll}
V_{1}=0,208 \mathrm{~m}^{3} & V_{2}= \\
t_{1}=20^{\circ} \mathrm{C} & t_{2}=2^{\circ} \mathrm{C} \\
P_{1}=1850 \mathrm{kPa} & \\
T_{1}=293^{\circ} \mathrm{K} & \\
9.2 .1 \quad V_{2} \\
\qquad \begin{array}{ll}
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
V_{2} & =\frac{V_{1} \cdot T_{2}}{T_{1}} \\
& =\frac{0,208(275)}{293}
\end{array} \\
\qquad=0,195 \mathrm{~m}^{3}
\end{array}
$$

9.2.2 $\quad P_{2}$
$P_{2}=\frac{P_{1} \cdot V_{1} \cdot T_{2}}{T_{1} \cdot V_{2}}$
$=\frac{185(0,208)(275)}{293(0,089)} \checkmark \checkmark$
$=405,798 \mathrm{kPa} \checkmark$
9.2.3 Combination of Boyles's and Charles's laws There is no constant term/s

