

# higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

T<mark>650**(E)**(A4)</mark>T

## NATIONAL CERTIFICATE

## **ENGINEERING SCIENCE N4**

(15070434)

4 April 2018 (X-Paper) 09:00–12:00

This question paper consists of 8 pages, 1 formula sheet and 1 information sheet.

### DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

#### NATIONAL CERTIFICATE ENGINEERING SCIENCE N4 TIME: 3 HOURS MARKS: 100

#### INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Subsections of questions should be kept together.
- 5. Rule off across the page on completion of each question.
- 6. ALL formulae should be shown in the answer. Show ALL the steps in between your answers.
- 7. Use only BLUE or BLACK ink.
- 8. ALL the sketches and diagrams must be done in pencil.
- 9. Take  $g = 9.8 \text{ m/s}^2$ .
- 10. Write neatly and legibly.

#### **QUESTION 1: GENERAL**

| 1.1 | Define the following: |                                                                                |                    |
|-----|-----------------------|--------------------------------------------------------------------------------|--------------------|
|     | 1.1.1                 | Angular displacement                                                           |                    |
|     | 1.1.2                 | Elasticity (2 × 1)                                                             | (2)                |
| 1.2 | State the             | TWO characteristics of liquid.                                                 | (2)                |
| 1.3 | Name the              | e THREE types of hydraulic accumulators.                                       | (3)                |
| 1.4 |                       | Boyle's gas law in detail (in your answer show the statement, and the sketch). | (4)                |
| 1.5 | State the             | following laws in detail:                                                      |                    |
|     | 1.5.1                 | Pascal's law                                                                   | (1)                |
|     | 1.5.2                 | Newton's second law of motion                                                  | (2)                |
| 1.6 | In your ov            | wn words, explain what is meant by the following:                              |                    |
|     | 'The effic            | iency of the hydraulic press is 95%'                                           |                    |
|     | Your ans              | wer should reflect the volumes in the hydraulic press.                         | (1)                |
| 1.7 | Write dov             | wn the equation that explains Newton's second law of motion.                   | (1)                |
| 1.8 | Write dov             | wn the combination of Charles's and Boyle's laws.                              | (1)<br><b>[17]</b> |

#### **QUESTION 2: KINEMATICS**

2.1 An aircraft with an airspeed of 330 km/h takes off from the OR Tambo International Airport in the direction N35°W. The aircraft is blown off course by a wind of 90 km/h from the direction W42°S.

| Calculate the resultant velocity of the aircraft. | (5) |
|---------------------------------------------------|-----|
|---------------------------------------------------|-----|

2.2 Two vehicles start moving simultaneously. Vehicle P moves at 200 km/h W44<sup>o</sup>N while vehicle Q moves at 200 km/h directly east.

Calculate the velocity of Q relative to P.

(5)

2.3 A body is projected at such an angle that the maximum height is two-thirds of the range. The initial velocity is 350 m/s.

Calculate the angle of the projectile.

(5) **[15]** 

#### **QUESTION 3: ANGULAR MOTION**

Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question number (3.1.1–3.2.3) in the ANSWER BOOK.

- 3.1 A blue racing car with a mass of 1,8 tons races around a circular path with a diameter of 120 m at a speed of 180 km/h and covers a distance of 35 m.
  - 3.1.1 The angular displacement of the car is:
    - A 0,835 rad
    - B 0,524 rad
    - C 0,355 rad
    - D 0,583 rad
  - 3.1.2 The angular velocity of the car is:
    - A 0,535 rad/s
    - B 0,825 rad/s
    - C 0,582 rad/s
    - D 0,833 rad/s
- 3.2 A machine has a torque of 228 Nm at its spindle. The diameter of the spindle is 68 cm and the rotational frequency of the spindle is 12,5 rad/s.
  - 3.2.1 The power exerted is:

| A 1,85 KVV | А | 1,85 k | W |
|------------|---|--------|---|
|------------|---|--------|---|

- B 2,55 kW
- C 1,58 kW
- D 2,85 kW
- 3.2.2 If the efficiency of the machine is 94%, the input power of the machine is:
  - A 2,30 kW
  - B 3,30 kW
  - C 3,03 kW
  - D 2,30 kW

(2)

(2)

(2)

(2)

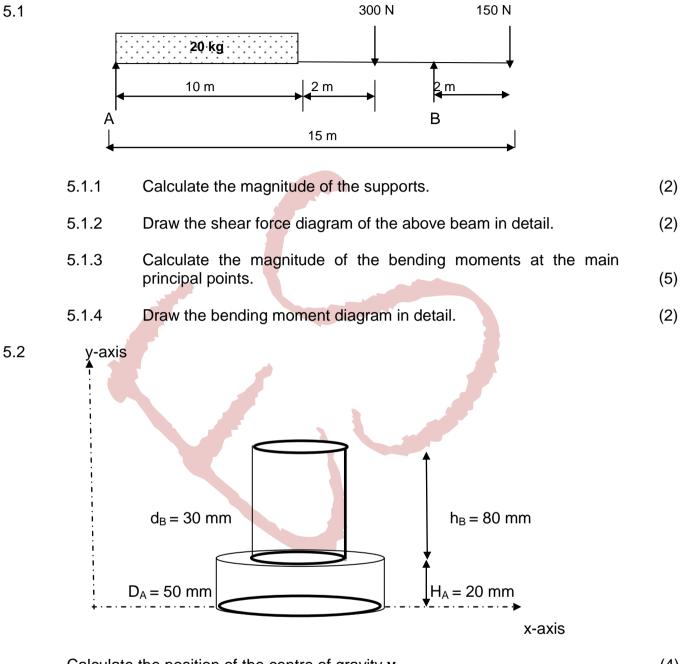
(1) [9]

(4)

- 3.2.3 The angular velocity of the machine is:
  - 12.5 rad/s А
  - 10.5 rad/s В
  - С 4.5 rad/s
  - D 7.5 rad/s

**QUESTION 4: DYNAMICS** 

4.1 A car with a mass of 1 ton is travelling on a horizontal road and increased its kinetic energy from 4,9 kJ to 9,3 kJ over a distance of 200 m on a smooth horizontal road.


Calculate the following:

- 4.1.1 The acceleration of the car on a smooth horizontal road (2)
- 4.1.2 The kinetic energy of the car when it has travelled 140 m. (3)
- 4.2 A soccer star is travelling in a car with a mass of 880 kg on a horizontal road at a velocity of 30 m/s; he immediately applies the brakes so as to stop 50 m away. The resistance to motion on the horizontal road is 295 N.

Calculate the following:

- 4.2.1 The deceleration of the car (2)
- 4.2.2 The braking force [11]

#### **QUESTION 5: STATICS**



Calculate the position of the centre of gravity y.

(4) **[15]** 

#### **QUESTION 6: HYDRAULICS**

6.1 The plunger of a hydraulic press has a diameter of 120 mm with a stroke length of 580 mm while the diameter of the ram is 220 mm. The plunger makes 80 working strokes to lift the load of 2,1 tons.

Calculate the following:

- 6.1.1 The mechanical advantage of the press if the force on the handle is 311,4 N and efficiency on the press is 94,6%. (5)
- 6.1.2 The distance the ram moved when the efficiency is 94,6%. (2)
- 6.2 The plunger of a three-cylinder single-acting pump has a diameter of 280 mm and a stroke length of 390 mm. The crankshaft speed is 333,33 r/min.

Calculate the volume of water delivered per hour if the slip is 4,8%. (3)

6.3 The ram diameter of a hydraulic accumulator is 444 mm and the load is 1 200 000 N.

Calculate the following:

- 6.3.1 The operating pressure
- 6.3.2 The energy stored if the ram is lifted 1,8 m

(2 × 2) (4) [14]

#### QUESTION 7: STRESS, STRAIN, AND YOUNG'S MODULUS OF ELASTICITY

7.1 A square bar of sides 120 mm and the length of 0,95 m is axially loaded on the square sides by a force of 300 kN. Young's modulus of elasticity of the material of the bar is 110 GPa.

Calculate the following:

- 7.1.1 The stress in the bar
- 7.1.2 The total extension in the bar

 $(2 \times 2)$  (4)

7.2 The diameter of the steel cable of a lift is 24,4 mm, and Young's modulus of elasticity of the steel is 209 GPa. The cable is 31 m long when the lift is at ground level.

Calculate the extension of the cable when a mass of 0,880 tons is loaded into the lift.

(5) **[9]** 

#### **QUESTION 8: HEAT**

8.1 A metal ball has a volume of 0,77 m<sup>3</sup>. The coefficient of cubic expansion for this metal is  $17 \times 10^{-6}$ /K.

Calculate the volume if the temperature of the ball is raised by 233 K. (3)

8.2 A 2 m<sup>3</sup> cylinder containing air at 25 °C and 550 kPa is connected by means of a valve to another cylinder contacting 6 kg of air at 35 °C and 220 kPa. When the valve is opened, the entire system is allowed to reach a thermal equilibrium with the surroundings at 20 °C. The gas constant of the air is 287 J/kg.K.

Calculate the following:

| 8.2.1 | The volume of the | econd cylinder before the valve was op | ened (3) |
|-------|-------------------|----------------------------------------|----------|
|-------|-------------------|----------------------------------------|----------|

8.2.2 The final equilibrium pressure of the air

(4) [10]

TOTAL: 100

#### **ENGINEERING SCIENCE N4**

#### FORMULA SHEET (Useful information)

Any applicable formula may also be used.

$$\begin{split} L &= \frac{u^2}{g} \sin 2\theta & v = u + at & Q = mc\Delta t \\ v^2 &= u^2 + 2as & \Delta l = l_0 \alpha \Delta t \\ \hline V &= \frac{s}{t} & s = ut + \frac{1}{2} at^2 & \beta = 2\alpha \\ \gamma &= 3\alpha & \beta = 2\alpha \\ \gamma &= 3\alpha & \beta = 2\alpha \\ \gamma &= 3\alpha & \beta = 2\alpha & \gamma = 3\alpha & \beta = 2\alpha \\ \gamma &= 3\alpha & \beta = 2\alpha & \gamma = 3\alpha & \beta & \gamma = 3\alpha & \beta & \gamma = 2\alpha & \gamma = 3\alpha & \beta & \gamma = 2\alpha & \gamma = 2\alpha & \gamma = 3\alpha & \beta & \gamma = 2\alpha & \gamma = 2\alpha$$

#### PHYSICAL CONSTANTS

| QUANTITY                                     | CONSTANTS                 |
|----------------------------------------------|---------------------------|
| Atmospheric pressure                         | 101,3 kPa                 |
| Density of copper                            | 8 900 kg/m <sup>3</sup>   |
| Density of aluminium                         | 2 770 kg/m <sup>3</sup>   |
| Density of gold                              | 19 000 kg/m <sup>3</sup>  |
| Density of alcohol (ethyl)                   | 790 kg/m <sup>3</sup>     |
| Density of mercury                           | 13 600 kg/m <sup>3</sup>  |
| Density of platinum                          | 21 500 kg/m <sup>3</sup>  |
| Density of water                             | 1 000 kg/m <sup>3</sup>   |
| Density of mineral oil                       | 920 kg/m <sup>3</sup>     |
| Density of air                               | 1,05 kg/m <sup>3</sup>    |
| Electrochemical equivalent of silver         | 1,118 mg/C                |
| Electrochemical equivalent of copper         | 0,329 mg/ <mark>C</mark>  |
| Gravitational acceleration                   | 9,8 m/s <sup>2</sup>      |
| Heat value of coal                           | 30 MJ/kg                  |
| Heat value of anthracite                     | 35 MJ/kg                  |
| Heat value of petrol                         | 45 MJ/kg                  |
| Heat value of hydrogen                       | 140 MJ/kg                 |
| Linear coefficient of expansion of copper    | 17 × 10 <sup>-6</sup> /°C |
| Linear coefficient of expansion of aluminium | 23 × 10 <sup>-6</sup> /°C |
| Linear coefficient of expansion of steel     | 12 × 10 <sup>-6</sup> /°C |
| Linear coefficient of expansion of lead      | 54 × 10 <sup>-6</sup> /°C |
| Specific heat capacity of steam              | 2 100 J/kg.°C             |
| Specific heat capacity of water              | 4 187 J/kg.°C             |
| Specific heat capacity of aluminium          | 900 J/kg.°C               |
| Specific heat capacity of oil                | 2 000 J/kg.°C             |
| Specific heat capacity of steel              | 500 J/kg.°C               |
| Specific heat capacity of copper             | 390 J/kg.°C               |