

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE

DIGITAL ELECTRONICS N6

29 JULY 2021

This marking guideline consists of 7 pages.

Please turn over

-2-DIGITAL ELECTRONICS N6

SECTION A

QUESTION 1

- 1.1 Synchronous
- 1.2 UART
- 1.3 Modem
- 1.4 Address
- 1.5 Server

(5 × 1) **[5]**

QUESTION 2

2.1	Handshaking		
2.2	Solar flare		
2.3	XOR gate		
2.4	XNOR gate		
2.5	Hamming code	(5 × 1)	[5]

QUESTION 3

- 3.1 False
- 3.2 True
- 3.3 True
- 3.4 False
- 3.5 True

(5 × 1) **[5]**

-3-DIGITAL ELECTRONICS N6

QUESTION 4

- 4.1 High level
- 4.2 BASIC or FORTRAN or COBOL or any other suitable answer
- 4.3 Machine code
- 4.4 Translating
- 4.5 Compiling

QUESTION 5

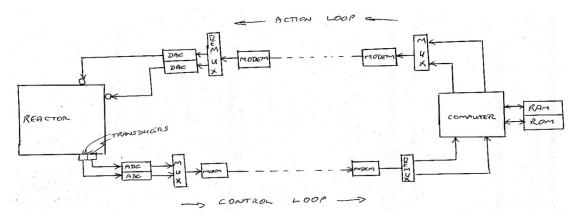
5.1	С	2			
5.2	В	3			
5.3	В	3			
5.4	В	3			
5.5	D	C		(5 × 1)	[5
				(3 ~ 1)	[3
QUES	TION 6	N 6			
6.1	G	G			
6.2	F	=			
6.3	В	3			
6.4	А	4			
6.5	Е	=			

C.O			
		(5 × 1)	[5]
			[30]

TOTAL SECTION A: 30

(5 × 1)

[5]


-4-DIGITAL ELECTRONICS N6

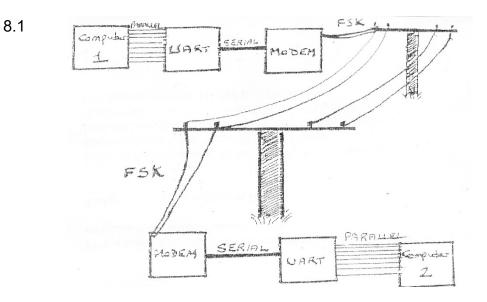
SECTION B

QUESTION 7

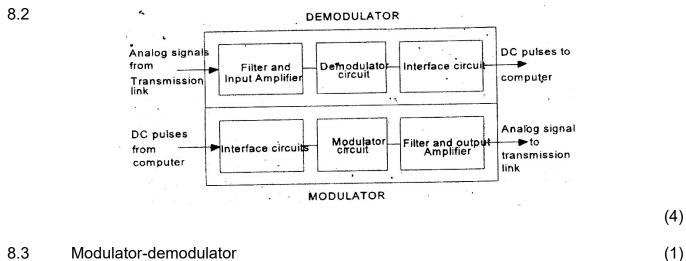
- 7.1 Thermocouple
- 7.2 Action

7.3

NOTE: The reactor must be named as such. Students must be penalised if they misname it. (12)

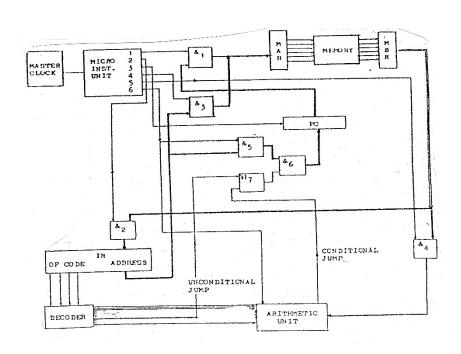

- 7.4
- Data selection
- Data routing
- Operation sequencing
- Parallel-to-serial conversion
- Waveform generation
- Logic function generation

(Any 4 × 1) (4) **[18]**


(1)

(1)

QUESTION 8


-5-DIGITAL ELECTRONICS N6

[11]

QUESTION 9

9.1

(10)

(1)

(1)

- 9.2 DEMUX
- 9.3 10102
- 9.4 The command to load the accumulator is completed after five pulses. ✓ However, the pulse distributor always generates six pulses regardless. ✓ Therefore, the last pulse will cause no action to be taken, ✓ hence it is a 'do-nothing' phase.

(3) [**15**]

-6-DIGITAL ELECTRONICS N6

QUESTION 10

10.1

PASS	DIRE	<u>STRAITS</u>	MARK
0	8	8	16
		15	
1			23
		22	
2			30
		29	
3			37

- 8
- 29
- 37
- **NOTE:** 1. The column "PASS" can start on 1 and not 0.
 - 2. Each correct row (to the dashed line, which does not have to be included) is worth TWO marks no half marks. Mistakes must not be followed through.
 - 3. The final printout below the table MUST be in the correct order, one below the other, for TWO marks.
- 10.2 Airline, theatre, bus or train reservations; ATM transactions; gaming or any other valid answer (1)
- 10.3 Salaries and wages, bills, examination results, or any other suitable alternative (1)
 - [Ì2j́

(10)

-7-DIGITAL ELECTRONICS N6

QUESTION 11

11.1	11 02 03 04 05 16 17 18 19 010	
	Pos. 1 checks 3; 5; 7; 9 0 0 1 1 – P1 should therefore be 0: Not: 1✓✓	
	Pos. 2 checks 3; 6; 7; 10 0 1 1 0 – P2 should therefore be 0: It is therefore: $0 \checkmark \checkmark$	
	Pos. 4 checks 5; 6; 7 0 1 1 – P4 should therefore be 0: It is therefore: $0\checkmark\checkmark$	
	Pos. 8 checks 9; 10 1 0 – P8 should therefore be 1: It is therefore: $0\checkmark\checkmark$	
	Therefore, the fault lies on bit $0001_2 = 1_{10}$	
	Therefore, pos. 1, which is a 1, should be a 0.	
	I.e. the word should be: 00000011110 _{hamming} √√	(10)
11.2	+0,00011101 × 10 ⁺¹¹⁰ ✓	
	= 111,01₂ ✓	
	= 4 + 2 + 1 + 0,25	
	= 7,25 ₁₀ √	(3)
11.3	D+E = E+D	
	OR	
	D.E = E.D	(1) [14]

TOTAL SECTION B: 70 GRAND TOTAL: 100