

higher education \& training

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE

DIGITAL ELECTRONICS N6

31 JULY 2019

This marking guideline consists of 7 pages.

QUESTION 1: COMPUTER SYSTEMS

1.1 1.1.1 D
1.1.2 A
1.1.3 A
1.1.4 C

$$
(4 \times 1)
$$

(4)
1.2 1.2.1 True
1.2.2 True
1.2.3 True
1.2.4 False
(4×1)
(4)
$1.3 \quad 1.3 .1 \quad D$
1.3.2 F
1.3.3 C
1.3.4 B

$$
\begin{equation*}
(4 \times 1) \tag{4}
\end{equation*}
$$

1.4

Follows the Seebeck effect which means if two different metals have their ends joined and those ends are kept at different temperatures, a potential difference that is proportional to the temperature difference develops across the metals
1.5 - Data selection

- Data routing
- Operation sequencing
- Parallel-to-serial conversion
- Waveform generation
- Logic function generation
(Any 4×1)

QUESTION 2: TRANSMISSION, DATA ACQUISTION AND RELATED HARDWARE

2.1

2.1 .1	A
2.1 .2	C
2.1 .3	A
2.1 .4	B

$$
\begin{equation*}
(4 \times 1) \tag{4}
\end{equation*}
$$

$2.2 \quad$ 2.2.1 False
2.2.2 True
2.2.3 True
2.2.4 False

$$
(4 \times 1)
$$

(4)
2.3
$\begin{array}{ll}2.3 .1 & E \\ 2.3 .2 & \text { C } \\ 2.3 .3 & B \\ 2.3 .4 & \text { A }\end{array}$

$$
\begin{equation*}
(4 \times 1) \tag{4}
\end{equation*}
$$

2.4 :

(4)
2.5
[20]

QUESTION 3: COMPUTER ARCHITECTURE

3.1

FETCH ROUTINE

Third Micro-instruction: Pulse 3

EXECUTE ROUTINE

Fifth micro-instruction: Pulse 5
OPERAND 00010001 LOADED INTO THE AECUMULATOR

00010001

Sixth micro-instruction: Pulse 6: Do-Nothing Phase: LOAD is complete! A.L.U/A.L.E. : \longleftarrow Nothing happens.

QUESTION 4: HIGH-LEVEL PROGRAMMING

4.1

PASS	MUMFORD	SONS	ANSWER
0	14	9	23
		16	
- -----	- -----	- -----	- -----
1			30
		23	
- ----	- -----	- ----	- ----
2			37
		30	
- -----	- -----	- -----	- -----
3			44
		37	

NOTE: 1. The column PASS can start on 1 and not 0 .
2. Each correct row (to the dashed line which does not have to be included) is worth TWO marks - no half marks. Mistakes must NOT be followed through.
3. The final printout below the table must be in the correct order for TWO marks.
4.2 - A bug is an unintentional fault in a program that causes malfunctioning.

- A virus is a program intentionally designed to cause trouble in a computer.
4.3 Stack pointer

0A
Stack

Address	Contents
07	60_{16}
08	32_{16}
09	81_{16}
$0 A$	F216

NOTE: ONE mark for incrementing the stack pointer, ONE for indicating the new address and ONE for including the new contents. If the candidate did not redraw the rest of the stack, only the mark for the correct stack pointer can be given.
$4.4 \quad$ INSTRUCTION NUMBER

ACCUMULATOR CONTENTS
33_{16}
77_{16}
FF ${ }_{16}$
88_{16}
99_{16}

NOTE: The instruction number may also be given in binary. The accumulator contents must be given in hexadecimal.

QUESTION 5: NUMBER SYSTEMS

$5.1 \quad 0 \quad 1_{2} 1_{3} 1_{4} 1_{5} 1_{6} 1_{7} 1_{8} 1_{9} 1_{10}$
Pos. 1 checks 3; 5; 7; 9
$\begin{array}{lll}1 & 1 & 1 \text { - P1 should thus be 0: IT IS thus: } 0\end{array}$
Pos. 2 checks 3; 6; 7; 10
1111 - P2 should thus be 0 : NOT thus: 1
Pos. 4 checks 5; 6; 7
$1 \quad 11$-P4 should thus be 1: IT IS thus: 0
Pos. 8 checks 9; 10
11 - P8 should thus be 0: NOT thus: 1
Thus the fault lies on bit $10102-1010$
Thus pos. 10 which is a 1 should be a 0
i.e. the word should be: $01111111 \underline{10}_{\text {hamming }}$
5.2

$$
\begin{align*}
& +0,01111010 \times 10^{+111} \tag{10}\\
& =111101_{2} \\
& =32+16+8+4+1 \\
& =61_{10} \tag{3}
\end{align*}
$$

$5.3 \quad 11000101$ 1001xs3
NOTE: ONE mark for each nibble (4-bit string). If the subscript is omitted, the answer is wrong.
$5.4 \quad 11110102$
NOTE: ONE mark for the correct conversion, ONE for showing the subscript 2
5.5
D. $(E+F)=D . E+D . F$
$D+E \cdot F=(D+E) \cdot(D+F)$

