

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE

DIGITAL ELECTRONICS N6

31 JULY 2019

This marking guideline consists of 7 pages.

Please turn over

-2-DIGITAL ELECTRONICS N6

QUESTION 1: COMPUTER SYSTEMS

1.1	1.1.1	D
	1.1.2	Α
	1.1.3	Α
	1.1.4	С

 (4×1) (4)

(4)

1.2 1.2.1 True 1.2.2 True 1.2.3 True

1.2.4	False
-------	-------

1.3 1.3.1 D 1.3.2 F 1.3.3 C 1.3.4 B

1.4

(4 × 1) (4)

 (4×1)

Follows the Seebeck effect which means if two different metals have their ends joined and those ends are kept at different temperatures, a potential difference that is proportional to the temperature difference develops across the metals

(4)

- 1.5 Data selection
 - Data routing
 - Operation sequencing
 - Parallel-to-serial conversion
 - Waveform generation
 - Logic function generation

(Any 4 × 1) (4) **[20]**

-3-DIGITAL ELECTRONICS N6

QUESTION 2: TRANSMISSION, DATA ACQUISTION AND RELATED HARDWARE

2.1 2.1.1 A 2.1.2 C 2.1.3 A

2.2

2.1.4 B

False

(4 × 1) (4)

 (4×1)

2.2.2 True 2.2.3 True 2.2.4 False

2.2.1

2.3 2.3.1 E 2.3.2 C 2.3.3 B 2.3.4 A

(4 × 1) (4)

(4)

3.1

QUESTION 3: COMPUTER ARCHITECTURE

Copyright reserved

(10)

-5-DIGITAL ELECTRONICS N6

(10) **[20]**

-6-**DIGITAL ELECTRONICS N6**

QUESTION 4: HIGH-LEVEL PROGRAMMING

4.1

PASS	MUMFORD	SONS	ANSWER
0	14	9	23
		16	
1			30
		23	
2			37
		30	
3			44
		37	

(10)

NOTE: The column PASS can start on 1 and not 0. 1.

- 2. Each correct row (to the dashed line which does not have to be included) is worth TWO marks - no half marks. Mistakes must NOT be followed through.
- The final printout below the table must be in the correct order 3. for TWO marks.
- 4.2 • A bug is an unintentional fault in a program that causes malfunctioning.
 - A virus is a program intentionally designed to cause trouble in a computer.

4.3 Stack pointer 0A

Stack

Address	<u>Contents</u>
07	6016
08	3216
09	81 ₁₆
0A	F2 ₁₆

(2)

NOTE: ONE mark for incrementing the stack pointer, ONE for indicating the new address and ONE for including the new contents. If the candidate did not redraw the rest of the stack, only the mark for the correct stack pointer can be given.

4.4	INSTRUCTION NUMBER	ACCUMULATOR CONTENTS
	00	3316
	01	77 ₁₆
	02	FF ₁₆
	03	8816
	04	99 ₁₆

NOTE: The instruction number may also be given in binary. The accumulator contents must be given in hexadecimal. (5) [20]

-7-DIGITAL ELECTRONICS N6

QUESTION 5: NUMBER SYSTEMS

5.1	0 1 1 2 1 3 1 4	15 16 17 18 19 110	
	Pos. 1 che	ecks 3; 5; 7; 9 1 1 1 1 - P1 should thus be 0: IT IS thus: 0	
	Pos. 2 che	ecks 3; 6; 7; 10 1 1 1 1 – P2 should thus be 0: NOT thus: 1	
	Pos. 4 che	ecks 5; 6; 7 1 1 1 – P4 should thus be 1: IT IS thus: 0	
	Pos. 8 che	ecks 9; 10 1 1 – P8 should thus be 0: NOT thus: 1	
	Thus the f	ault lies on bit 1010 ₂ – 10 ₁₀	
	Thus pos.	10 which is a 1 should be a 0	
	i.e. the wo	ord should be: 0111111110 _{hamming}	(10)
5.2	+(D,01111010 x 10 ⁺¹¹¹	
	= '	1111012	
	= ;	32 + 16 + 8 + 4 + 1	
	= 6	6110	(3)
5.3	3 1100 0101 1001xs3		(3)
	NOTE:	ONE mark for each nibble (4-bit string). If the subscript is omitted, the answer is wrong.	
5.4	11 [,]	110102	
	NOTE:	ONE mark for the correct conversion, ONE for showing the subscript 2	(2)
5.5	D.(E + F) = D.E + D.F D + E.F = (D + E).(D + F)		(2) [20]
		TOTAL:	100