higher education \& training
Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE
 DIGITAL ELECTRONICS N6

8 April 2021

This marking guideline consists of 7 pages.

SECTION A

QUESTION 1

1.1	1.1 .1	B
	1.1 .2	C
	1.1 .3	D
	1.1 .4	B
	1.1 .5	B

$$
\begin{equation*}
(5 \times 1) \tag{5}
\end{equation*}
$$

1.2 1.2.1 High-level languages
1.2.2 BASIC or FORTRAN or COBOL or any other valid answer
1.2.3 Machine code
1.2.4 Compiling
1.2.5 Translating
$\begin{array}{ll}1.3 & 1.3 .1 \\ D\end{array}$
1.3.2 A
1.3.3 C
1.3.4 G
1.3.5 E
1.4 1.4.1 True
1.4.2 False
1.4.3 False
1.4.4 False
1.4.5 True
1.5 1.5.1 Bug
1.5.2 8086
1.5.3 Flow chart
1.5.4 RAM
1.5.5 Real-time computing
1.6 1.6.1 modem
1.6.2 UART
1.6.3 Windows
1.6.4 1,023 V
1.6.5 associative

SECTION B

QUESTION 2

NOTE: The chicken run must be named as such. Candidates must be penalised if they misname it.

QUESTION 3

3.1 - Data selection

- Data routing
- Operation sequencing
- Parallel-to-serial conversion
- Waveform generation
- Logic function generation

$$
\begin{equation*}
(\text { Any } 3 \times 1) \tag{3}
\end{equation*}
$$

3.2 Pulse distribution

3.3

3.4 - Transmit side - changes the high-frequency signals from a digital device into frequency shift keying for transmission across the telephone wires.

- Receive side - changes the frequency shift keying audio tones from the telephone wires into high-frequency signals for the digital device.
3.5

(NOTE: Any wave train can be drawn as long as the frequencies on the 1 are visibly higher than the frequencies on the 0 and these frequencies must show constant amplitudes throughout.)

QUESTION 4

4.1

4.2

FETCH ROUTINE

Second microinstruction: Pulse 2
INSTRUCTION [OP-CODE PLUS THE OPERAND ADDR.] $\longrightarrow=$ INSTRUCTION REGISTER

Third microinstruction: Pulse 3

Fourth microinstruction: Pulse 4
Instruction-word is SPLIT:

Fifth microinstruction: Pulse 5

Sixth microinstruction: Pulse 6

'DO-NOTHING' PHASE (i.e. nothing happens during this pulse)

QUESTION 5

5.1

PASS	MONTY	PYTHON	ANSWER
0	8	12	20
	16		
- -----	-----	- -----	- -----
1			28
	24		
- -----	- -----	- -----	- -----
2			36
	32		

36
32
12
NOTE:

1. The column 'PASS' can start on 1 and not 0 .
2. Each correct row (the dashed lines do not have to be included) is worth 1 marks - no half marks. Mistakes must not be followed through. (6×1)
3. The final printout below the table must be in the correct order, one below the other for 1 mark.
5.2 - The cost of a new system or expansion of the existing system

- Hiring of additional an specialised personnel
- Training of personnel
- Advantages and benefits that can be derived from the proposed system
- Environmental considerations
- Problem areas as well as possible solutions
- Commissioning and installation
- Service and backup facilities
- Data files and format requirements at both input and output terminals
- Future expansion and estimated lifetime of the system (Any 5×1)

QUESTION 6

$6.1 \quad 1_{1} 0_{2} 1_{3} 0_{4} 1_{5} 1_{6} 1_{7} O_{8} 1_{9} 1_{10}$
Pos. 1 checks 3; 5; 7; 9
1111 - P1 should thus be 0: NOT thus: 1
Pos. 2 checks 3; 6; 7; 10
$1110-$ P2 should thus be 1: IT IS thus: $0 \checkmark \checkmark$
Pos. 4 checks 5; 6; 7
111 -P4 should thus be 1: NOT thus: $1 \checkmark \checkmark$
Pos. 8 checks 9; 10
11 - P8 should thus be 0: IT IS thus: $0 \checkmark \checkmark$
Thus the fault lies on bit $0101_{2}=510 \checkmark$
Thus pos. 5 which is a 1 should be a 0 ,
i.e. the word should be: $1010011011_{\text {hamming }} \checkmark$
$6.2+0,00110000 \times 10^{+100} \checkmark$
$=11_{2} \checkmark$
$=2+1=310 \checkmark$

