higher education \& training

Department:
 Higher Education and Training REPUBLIC OF SOUTH AFRICA

T480(E)(A2)T
 NATIONAL CERTIFICATE DIGITAL ELECTRONICS N6

(8080376)

2 April 2019 (X-Paper)
09:00-12:00
Nonprogrammable calculators may be used.

This question paper consists of 9 pages.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA
 NATIONAL CERTIFICATE
 DIGITAL ELECTRONICS N6
 TIME: 3 HOURS
 MARKS: 100

INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Write neatly and legibly.

QUESTION 1: COMPUTER SYSTEMS

1.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (1.1.1-1.1.4) in the ANSWER BOOK.
1.1.1 A device that accepts several data inputs and allows only one at a time to appear at the output:

A Modem
B Multiplexer
C Demultiplexer
D Analogue-to-digital converter
1.1.2 The following transducer relies on the Seebeck effect:

A Thermistor
B Thermocouple
C Thermometer
D Thermostat
1.1.3 The difference between analogue input and digital output:

A Resolution
B Conversion time
C Settling time
D Quantising error
1.1.4 The number of functions a digital device can perform:

A Logical operation
B Branch instruction
C Instruction repertoire
D Percentage resolution

$$
\begin{equation*}
(4 \times 1) \tag{4}
\end{equation*}
$$

1.2 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (1.2.1-1.2.4) in the ANSWER BOOK.
1.2.1 A thermistor can be either NTC or PTC.
1.2.2 The micro-instruction unit that distributes pulses in the control unit of a computer is the multiplexer.
1.2.3 A decoder in the control unit of a computer decodes the address.
1.2.4 The bus on a computer is used to transport addresses, data and control signals between the CPU and peripheral devices.
1.3 Choose a term from COLUMN B that matches a description in COLUMN A. Write only the letter (A-F) next to the question number (1.3.1-1.3.4) in the ANSWER BOOK.

COLUMN A			COLUMN B			
1.3 .1	IC manufacturer	A	USB			
1.3 .2	Microprocessor	B	MUX			
1.3 .3	Port connected directly onto the bus	C	Intel			
1.3 .4	Volatile memory	D	RAM			
		E	ROM			
	F	Pentium				

1.4 Draw a fully labelled diagram of a computer numeric control (CNC) system that would be used in a profile-cutting production system and briefly describe the operation of the system.

QUESTION 2: TRANSMISSION, DATA ACQUISITION AND RELATED HARDWARE

2.1 Various options are given as possible answers to the following questions. Choose the answer and write only the letter (A-D) next to the question number (2.1.1-2.1.4) in the ANSWER BOOK.
2.1.1 Which ONE of the following pieces of equipment is essential when connecting a computer to the internet across telephone wires:

A Modem
B Multiplexer
C Demultiplexer
D Analogue-to-digital converter
2.1.2 The interface that converts parallel data into serial data and vice versa:

A Transducer
B Thermocouple
C UART
D Modem
2.1.3 Which ONE of the following is a widely used internet browser:

A Windows
B Linux
C Apple
D Google Chrome
2.1.4 Communication system that requires no start and stop bits:

A Frequency-shifted keying
B Wireless transmission
C Synchronous transmission
D Asynchronous transmission

$$
\begin{equation*}
(4 \times 1) \tag{4}
\end{equation*}
$$

2.2 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'True' or 'False' next to the question number (2.2.1-2.2.4) in the ANSWER BOOK.
2.2.1 Modem tones can be heard by the human ear.
2.2.2 RZ transmission means that the coded signal returns to zero between bits.
2.2.3 PCM stands for parity-coded modulation.
2.2.4 Hamming code is commonly used as an error-detecting code.

$$
\begin{equation*}
(4 \times 1) \tag{4}
\end{equation*}
$$

2.3 Choose a term from COLUMN B that matches a description in COLUMN A. Write only the letter (A-F) next to the question number (2.3.1-2.3.4) in the ANSWER BOOK.

COLUMN A			COLUMN B
2.3 .1	Used for even parity	A	Hamming code
2.3 .2	Used for odd parity	B	Gray code
2.3 .3	Source of transmission noise	C	handshaking
2.3 .4	Process of synchronising modems	D	solar flare
		E	XNOR gate
		F	XOR gate

2.4 A multiplexer (mux) is a versatile piece of hardware.

Name FOUR applications of a multiplexer, other than multiplexing, in a digital system.
2.5 A PCM system must transmit the following packages using NRZ (nonreturn to zero):

1000111011000110

Use ALL FOUR bits in the string and show the transmission graphically.

QUESTION 3: COMPUTER ARCHITECTURE

Control units vary from one computer to another. Base your answers to the following questions on the Von Neumann Architecture where a common RAM holds all data and program instructions, necessitating a fetch-and-execute routine.
3.1 Draw a fully labelled block diagram of a control unit integrated with a random access memory (RAM) and driven by a six-bit ring counter. Include ALL gates and interconnections between the registers.
3.2 Use the table below to show what happens after each pulse from the micro-instruction unit in QUESTION 3.1. Clearly separate each micro-instruction from the next and clearly show how the micro-instructions are grouped into routines.

Use block diagrams or descriptions or both to clearly show what happens when the control unit receives the instruction to load the accumulator.

INSTRUCTION LOCATION	INSTRUCTION WORD	DESCRIPTION
0011	11000001	The content of address 0001 is 1111 1111. This must be loaded into the accumulator.

QUESTION 4: HIGH-LEVEL PROGRAMMING

4.1 Consider the following BASIC program. Follow the instructions in the remark statements and do exactly what it says. The answer in the ANSWER BOOK must be exactly what the on-screen printout would be.

```
10 REM The following program is used to place a notice on the screen
20
30
40
5 0
REM would be printed on-screen.
LET WORDS01$ = 'PAY ATTENTION'
LET WORDS02$ = 'TO WHAT HAS'
LET WORDS03$ = 'TO BE DONE!'
LET WORDS04$ = 'CONCENTRATE'
LET WORDS05$ = 'ON THE TASK'
LET WORDS06$ = 'AT HAND'
LET WORDS07$ = 'NEVER WAIVER'
LET WORDS08$ = 'IN YOUR QUEST'
LET WORDS09$ = 'FOR EXCELLENCE'
LET WORDS10$ = 'YOU ARE A CHILD OF'
LET WORDS11$ = 'THE UNIVERSE'
LET WORDS12$ = 'NO LESS THAN THE TREES'
LET WORDS13$ = 'AND THE STARS'
LET WORDS14$ = 'YOU HAVE A RIGHT TO BE HERE'
LET WORDS15$ = 'NOTHING'
LET WORDS16$ = 'BEGETS'
LET WORDS17$ = 'NEVER UNDERESTIMATE'
LET WORDS18$ = 'A CHILD'
LET WORDS19$ = 'NEVER OVERESTIMATE'
LET WORDS20$ = 'AUTHORITY'
LET WORDS21$ = 'YOUR CAREER, HOWEVER HUMBLE'
LET WORDS22$ = 'IS A REAL POSSESSION'
LET WORDS23$ = 'IN THE CHANGING FORTUNES OF TIME'
LET WORDS24$ = ''
LET WORDS25$ = 'BE GOOD TO THOSE'
LET WORDS26$ = 'YOU MEET ON THE WAY UP'
LET WORDS27$ = 'YOU NEVER KNOW WHO'
LET WORDS28$ = 'YOU WILL MEET ON YOUR'
LET WORDS29$ = 'WAY DOWN'
LET WORDS30$ = 'A SMILE CAN'
LET WORDS31$ = 'WORK WONDERS'
LET WORDS32$ = 'YOU CAN NEVER BE TOO'
LET WORDS33$ = 'BUSY TO RETURN A'
LET WORDS34$ = 'SMILE'
LET WORDS35$ = 'BE CHEERFUL'
LET WORDS36$ = 'STRIVE TO BE HAPPY'
REM Carefully note what is entered into the next variables as
REM they will govern which text will be printed.
LET TODAYSPRINT01$ = 'WEEK1'
LET TODAYSPRINT01$ = 'WEEK2'
```

LET TODAYSPRINT01\$ = 'WEEK3'
LET TODAYSPRINT02\$ = 'WEEK1'
LET TODAYSPRINT02\$ = 'WEEK2'
LET TODAYSPRINT03\$ = 'WEEK1'
REM Now you can work out what is to be printed today by following theREM conditional GOTO statements.
PRINT 'THE WORDS OF WISDOM FOR TODAY ARE'

 PRINT
 PRINT
 550 IF TODAYSPRINT01\$ = 'WEEK1' THEN GOTO 610
 560 IF TODAYSPRINT01\$ = 'WEEK2' THEN GOTO 630
 570 IF TODAYSPRINT01\$ = 'WEEK4' THEN GOTO 650
 580 IF TODAYSPRINT02\$ = 'WEEK1' THEN GOTO 690
 590 IF TODAYSPRINT02\$ = 'WEEK2' THEN GOTO 750
 600 IF TODAYSPRINT03\$ = 'WEEK3' THEN GOTO 770
 610 PRINT WORDS01\$, WORDS24\$, WORDS02\$, WORDS24\$,
 WORDS03\$
 620 GOTO 800
 630 PRINT WORDS04\$, WORDS24\$, WORDS05\$, WORDS24\$,
 WORDS06\$
 640 GOTO 800
 650 PRINT WORDS07\$, WORDS24\$, WORDS08\$, WORDS24\$,
 WORDS09\$
 660 GOTO 800
 670 PRINT WORDS10\$, WORDS24\$, WORDS11,\$ WORDS24\$,
 WORDS12\$, WORDS24\$, WORDS13\$, WORDS24\$, WORDS14\$
 680 GOTO 800
 690 PRINT WORDS15\$, WORDS24\$, WORDS16\$, WORDS24\$,
 WORDS15\$
 700 GOTO 800
 710 PRINT WORDS17\$, WORDS24\$, WORDS18\$, WORDS24\$,
 WORDS19\$, WORDS24\$, WORDS20\$
 710 GOTO 800
 720 PRINT WORDS21\$, WORDS24\$, WORDS22\$, WORDS24\$,
 WORDS23\$
 725 GOTO 800
 730 PRINT WORDS25\$, WORDS24\$, WORDS276\$ WORDS24\$,
 WORDS27\$, WORDS24\$, WORDS28\$, WORDS24\$, WORDS29\$
 740 GOTO 800
 750 PRINT WORDS30\$, WORDS24\$, WORDS31\$
 760 GOTO 800
 770 PRINT WORDS32\$, WORDS24\$, WORDS33\$, WORDS24\$,
 WORDS34\$
 780 GOTO 800
 790 PRINT WORDS35\$, WORDS24\$, WORDS36\$
 800 END
 4.2 The program in QUESTION 4.1 was written in BASIC.
What does the acronym BASIC stand for?
4.3 Before a programmer writes any program, a systems analyst must first conduct a feasibility study to ascertain if a system is worth automating or not.

List SIX criteria a system analyst must address when conducting a feasibility study.
4.4 When a program is executed it can either be real-time or batch processed.

Give ONE real example of each.

QUESTION 5: NUMBER SYSTEMS

5.1 The following word is received in Hamming code:

${1000011110_{\text {hamming }}}^{\text {10 }}$

Find the fault in the word. Show ALL steps. Clearly state the bit number on which the fault lies and rewrite the correct word clearly indicating which bit has been corrected.
5.2 Write the following floating-point number in decimal showing ALL steps:

$$
\begin{equation*}
0110000011001 \tag{3}
\end{equation*}
$$

5.3 Solve the following using Boolean algebra:

$$
\begin{equation*}
\text { F = A.B.B.C }+\mathbf{C} . A . \bar{A} . B+\bar{A} \tag{3}
\end{equation*}
$$

5.4 Rewrite the following binary number in the binary code:

$$
\begin{equation*}
1001011^{\text {gray }} \tag{2}
\end{equation*}
$$

5.5 State why the XS-3 and 2.4.2.1. codes were developed.

