

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICS (First Paper) NOF LEVEL 3

(10501053)

4 November 2019 (X-Paper) 09:00–12:00

This question paper consists of 6 pages, 3 diagram sheets and 1 formula sheet.

TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

QUESTION 1

1.1 Write each of the following imaginary numbers in their simplest form:

1.1.1 $i^{\sqrt{64}}$

1.2 Simplify each of the following without using a calculator:

1.2.1 (12,6+j4,9) + (-1,3-j9,6) (2)

1.2.2
$$(6-i7)(6+i7)$$
 (2)

$$\begin{array}{ccc}
1.2.3 & -7 - i2 \\
& & -4 + i
\end{array}$$
(3)

1.2.4
$$3(\cos 25^\circ + i \sin 25^\circ).8(\cos 200^\circ + i \sin 200^\circ)$$
 (2)

1.2.5
$$\frac{4(\cos 190^\circ + i \sin 190^\circ)}{2(\cos 70^\circ + i \sin 70^\circ)}$$
 (2)

1.3 Convert each of the following complex numbers into polar form and express the argument θ as a positive angle:

1.3.1
$$z = -6 + i9$$
 (3)

1.3.2
$$z = \frac{-7 - i8}{2 - 3i}$$
(5)

1.4 Simplify each of the following and express the answer in the form a + ib. Show ALL calculations.

1.4.1	<u>12 45°.6 180°</u> 8 <u>20°</u>	(4)	
1.4.2	$\frac{3,8(\cos 120^\circ + i \sin 120^\circ)}{2,5 \cos 45^\circ}$	(3)	

 (2×2)

(4)

QUESTION 2

2.1 Solve for *x* in the following inequality:

 $x^2 - 8x + 23 \le 8 \tag{5}$

2.2 Solve for *x* by completing the square:

$$5x^2 - 3 = 2x$$
 (4)

2.3 Solve for *x* and *y* in:

$$y + 2x = 2 y^2 + 2x^2 = 3xy$$
(4)

2.4 Simplify each of the following:

2.4.1
$$\frac{a^2 - a}{a - 2} \cdot \frac{a + 1}{a^2 + 4a} \div \frac{a^2 - 3a - 4}{a^2 - 16}$$

2.4.2
$$\frac{y}{y^2 - 16} - \frac{y + 1}{y^2 - 5y + 4}$$
 (2 × 4) (8)

2.5 The following constraints are given for a linear programming problem:

$$x \le 6$$

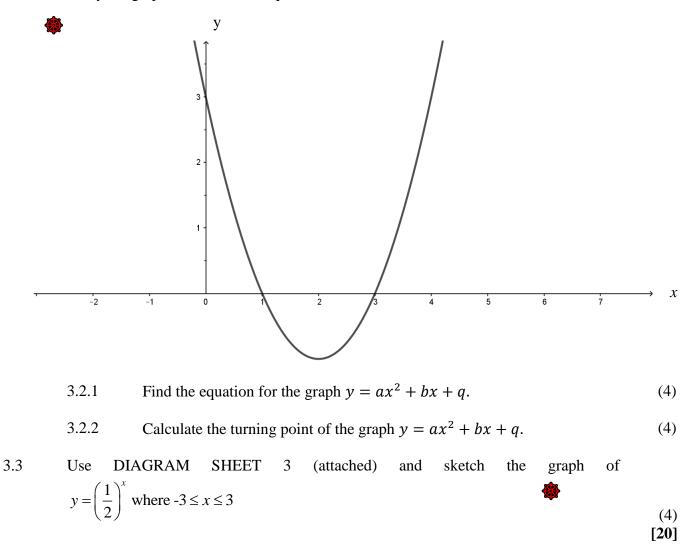
$$y \le 7$$

$$5x + 3y \le 36$$

$$x - 6y + 6 \le 0$$

2.5.1	Use DIAGRAM SHEET 1 (attached) and sketch the graph with the given constraints.	(4)
2.5.2	Determine the feasible region by shading.	(1)
2.5.3	Find the values of x and y that will maximize the profit if the objective function is $P = 100 x + 200 y$ by means of a boundary search.	(4) [30]

(10501053)


QUESTION 3

Given f(x): 2y - x = -1 and $g(x) = \frac{4}{x-4} + 2$

Use DIAGRAM SHEET 2 and sketch the graphs of f(x) and g(x) on the same system of axes. Indicate the asymptotes of g(x) (8)

3.2 In the figure below the graph of $y = ax^2 + bx + q$ is shown.

Study the graph and answer the questions.

QUESTION 4

4.1 If
$$s(t) = t^2 + 3t$$
, find the derivative $\frac{ds}{dt}$ from first principles. (4)

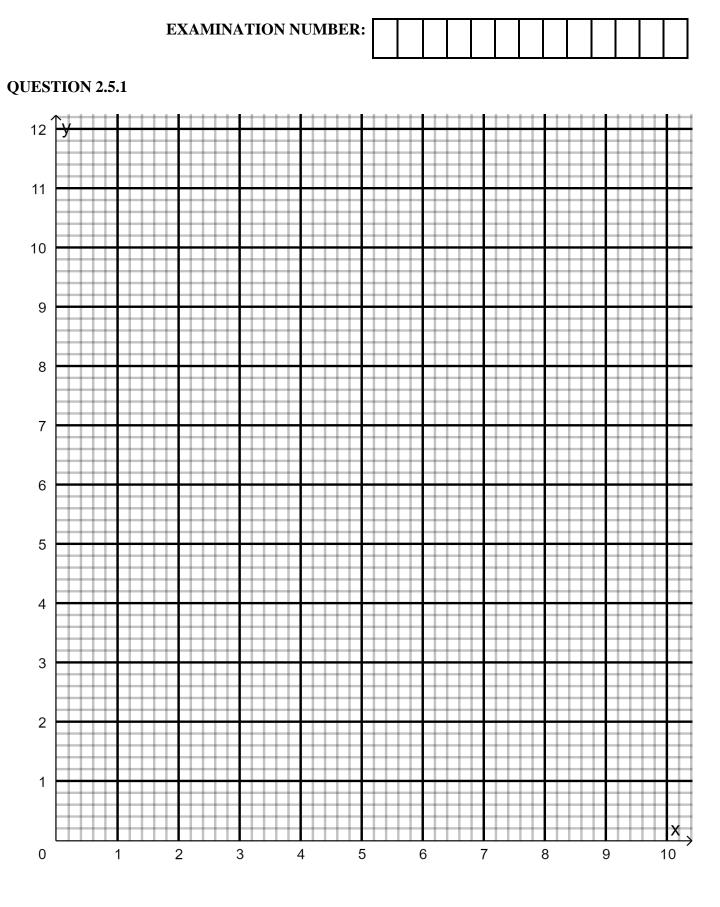
4.2 Determine the following limit:

$$\lim_{x \to \infty} \frac{4 - x^2}{x^3 - 2} \tag{3}$$

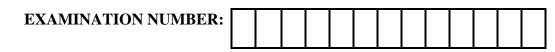
4.3 Use differentiation rules to determine $\frac{dy}{dx}$ of each of the following. Leave the answer with a positive exponent and in surd form where applicable.

4.3.1
$$y = \frac{1}{4}x^8 - \frac{1}{2}x^4 + 2$$

4.3.2 $y = \frac{2}{x} - \sqrt{x}$
4.3.3 $y = (x+2)(3x-5)$
(3 × 3) (9)


4.4 Find the greatest product that can be obtained by multiplying two numbers of which the sum is 32.

HINT: Make the one number (x) and the other number (32 - x). (4)


[20]

```
TOTAL: 100
```

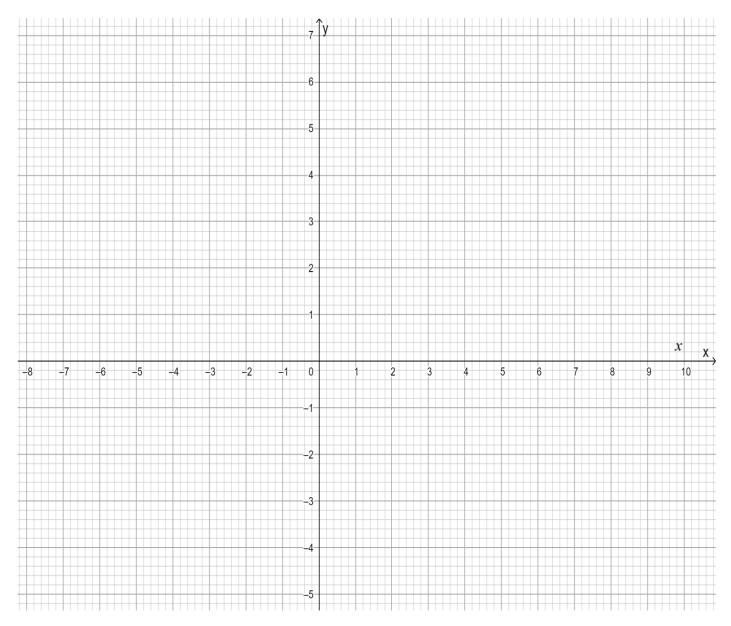

DIAGRAM SHEET 1

DIAGRAM SHEET 2

QUESTION 3.1

DIAGRAM SHEET 3

QUESTION 3.3

FORMULA SHEET

1.	$z = r\cos\theta + rj\sin\theta$
2.	$z = a \pm bj$ or $z = a \pm bi$ where $i = j = \sqrt{-1}$
3.	$r = \sqrt{a^2 + b^2}$ or $r = \sqrt{z \times \overline{z}}$
4.	$\alpha = \tan^{-1}\left(\frac{b}{a}\right)$
5.	$r \ \underline{\theta} = r \cos \theta$
6.	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
7.	$y = ax^2 + bx + c$
8.	$y = a(x-p)^2 + q$
9.	$y = a(x - x_1)(x - x_2)$
10.	$y = \frac{a}{\left(x+p\right)} + q$
11.	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
12.	$\frac{d}{dx}x^n = nx^{n-1}$
13.	$\frac{d}{dx}k = 0$
14.	Dx[kf(x)] = kDx[f(x)]
1.5	$= \left[c(\lambda) + (\lambda) \right] = \left[c(\lambda) \right] + \left[c(\lambda) \right]$

15.
$$Dx[f(x)\pm g(x)] = Dx[f(x)]\pm Dx[g(x)]$$