

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICS (First Paper) NQF LEVEL 3

(10501053)

20 February 2020 (X-Paper) 09:00–12:00

This question paper consists of 6 pages, 2 diagram sheets and 1 formula sheet.

TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- 3. Number the answers according to the numbering system used in this question paper.
- 4. Write neatly and legibly.

(10501053)

QUESTION 1

1.1 Simplify the following complex numbers without using a calculator.

1.1.1	$(-1+2i)\{(1-5i)+(3+4i)\}$	(3)
1.1.2	$\frac{1}{(2+3i)} \times \frac{1}{(1-2i)}$ (leave your answer in the form $a+ib$)	(4)

1.1.3
$$12(\cos 45^\circ + i \sin 45^\circ) \times 20(\cos 120^\circ + i \sin 120^\circ)$$

{leave your answer in the form $r(\cos \theta + i \sin \theta)$ } (2)

1.1.4
$$(2+5i)2+5(7+2i)-i(4-6i)$$
 (2)

1.2 Consider the following complex number $\frac{5+5i}{3-4i}$

1.2.1	Simplify the complex number in the form $a + bi$.	(4)
1.2.2	Determine the <i>modulus</i> (r) and <i>argument</i> (θ) of the complex number showing all the steps.	(4)
1.2.3	Show the complex number on an Argand diagram.	(3)

1.3 Simplify to the standard form a + bi.

$$\frac{(3|\underline{150^{\circ}})}{(2|\underline{30^{\circ}})(0,5|\underline{10^{\circ}})}$$
(3)

1.4 Solve for x by making use of the quadratic formula and leave your answer in the form a + bi.

$$5x^2 + 2x + 10 = 0 \tag{5}$$

[30]

QUESTION 2

- 2.1 Solve for x in $4x^2 3 = 2x$ by completing the square. (4)
- 2.2 Solve for z in $2z^2 = 7z 6$ using the quadratic formula. (4)
- 2.3 Solve the quadratic inequality $3x^2 8x 4 > 8$. (4)

2.4 Simplify the following expressions:

2.4.1
$$\frac{28x - 14}{45x - 30} \div \frac{14x + 7}{30x - 20}$$
 (4)

(10501053)

2.4.2
$$\frac{x-2}{x} - \frac{x}{x-4}$$
 [4)
[20]

QUESTION 3

3.1 Differentiate the following with respect to x. (Leave answers with POSITIVE exponents and in SURD form where applicable.)

3.1.1
$$r(x) = x^2 \sqrt[3]{x^2}$$
 (3)

3.1.2
$$y = \frac{-x^3}{3} + \frac{x^2}{2} + x - 6$$
 (4)

3.1.3
$$f(x) = (3x)^{-4}$$
 (2)

3.2 Find the derivative of
$$y = \frac{1}{x}$$
 from first principles. (4)

3.3 Determine
$$\lim_{x \to \infty} \frac{-4x}{7x - 3}$$
 (3)

-4-

QUESTION 4

- 4.1 Use DIAGRAM SHEET 1 to draw the graphs of $y = 3^x$ and $y = \frac{1}{x-2} + 1$ on the same system of axes. (6)
- 4.2 The following graphs represent $f(x) \cap g(x)$. Study the drawings and answer the questions.

4.3 The following constraints represent the production of two types of juices per day. $x \ge 50$

4.3.1	Use DIAGRAM SHEET 2 and sketch the graph with the given constraints.	(4)
4.3.2	Determine the feasible region.	(1)
4.3.3	Find the values of x and y that will minimise the profit if the objective function is $P = 0.3x + 0.5y$.	(5) [30]
	TOTAL:	100

-1-

DIAGRAM SHEET 1

DIAGRAM SHEET 2

QUESTION 4.3.1

FORMULA SHEET

1.	$z = r\cos\theta + rj\sin\theta$
2.	$z = a \pm bj$ or $z = a \pm bi$ where $i = j = \sqrt{-1}$
3.	$r = \sqrt{a^2 + b^2}$ or $r = \sqrt{z \times \overline{z}}$
4.	$\alpha = \tan^{-1}\left(\frac{b}{a}\right)$
5.	$r \ \theta = r \ cis \ \theta$
6.	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
7.	$y = ax^2 + bx + c$
8.	$y = a(x-p)^2 + q$
9.	$y = a(x - x_1)(x - x_2)$
10.	$y = \frac{a}{\left(x+p\right)} + q$
11.	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
12.	$\frac{d}{dx}x^n = nx^{n-1}$
13.	$\frac{d}{dx}k = 0$
14.	Dx[kf(x)] = kDx[f(x)]

15.
$$Dx[f(x) \pm g(x)] = Dx[f(x)] \pm Dx[g(x)]$$