

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICS (Second Paper) NOF LEVEL 2

(10501042)

23 February 2018 (X-Paper) 09:00–12:00

Candidates may use a nonprogrammable scientific calculator and a protractor.

This question paper consists of 8 pages, a formula sheet of 2 pages and 2 addenda.

NC2030(E)(F23)V

TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- 1. Answer ALL the questions.
- 2. Read ALL the questions carefully.
- Number the answers according to the numbering system used in this question paper. Clearly show ALL calculations, diagrams, graphs, etc. used to determine the answers.
 4.
 - Answers should be rounded to THREE decimal places, unless stated otherwise.
- 5. Diagrams are NOT drawn to scale.

Write neatly and legibly.

- 6.
- 7.

1.2

1.3

QUESTION 1

1.1 The circle-graph given below shows the spending of a country on various sports during a particular year.

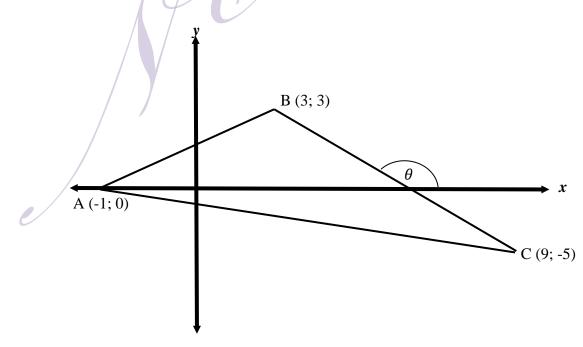
Study the graph carefully and answer the questions.

	Cricket 81° Basket Ball 50° Tennis 45° Golf 36° Others 31°	1						
1.1.1	What is the mathematical name for this kind of graph?	(1)						
1.1.2	On which sport does this country spend most of this money ?							
1.1.3	What percentage of the money is spent on golf?	(2)						
	owing are the masses of all the under-15 boys playing soccer at Francis High rounded to the nearest kg: 27 35 42 35 36 51 43 30 51 37 36 37 42 46 41 26 42 35 34 39 36 42 35 41 36 37 37 45 46 44 36 46 36 40 48							
1.2.1	Draw a stem-and-leaf diagram to sort this data.	(5)						
1.2.2	Calculate the mean mass of the boys.	(3)						
1.2.3	Determine the median of the masses.	(1)						
1.2.4	Write down the mode for the masses of the boys.	(1)						
1.2.5	Calculate the range of the masses.	(2)						
The foll	owing data is given:							
	33 23 19 39 68 37 7 45 19 40 37 43 28							
1.3.1	Write down the minimum value.	(1)						
1.3.2	Determine the lower quartile of the given data.	(2)						
1.3.3	Determine the upper quartile of the given data.	(2)						

-4-

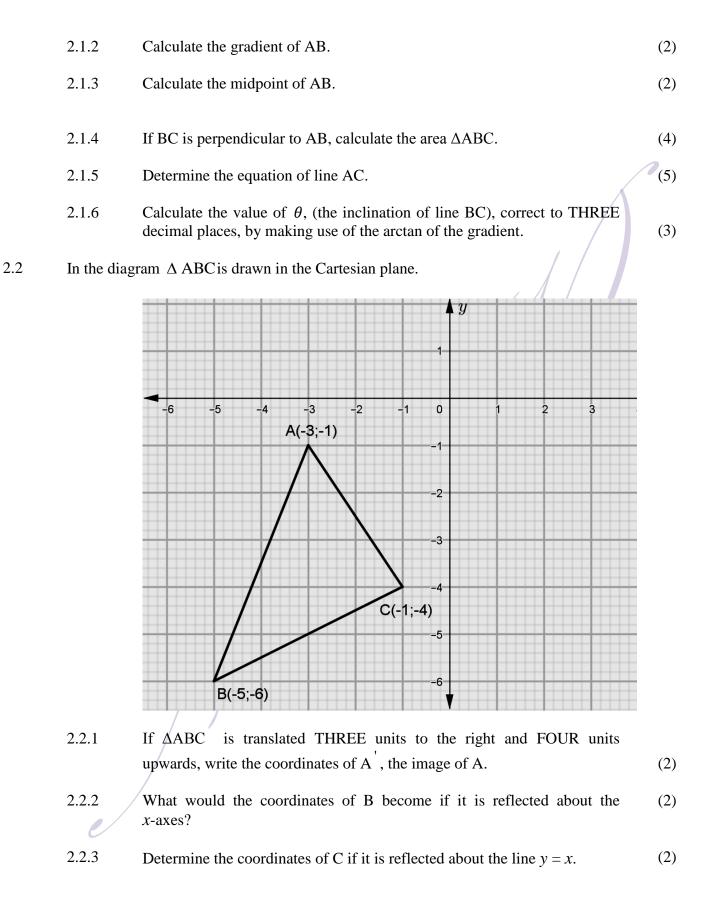
- 1.3.4 Calculate the interquartile range for the given data. (2)
 - 1.3.5 Determine the semi-interquartile range for the given data. (1)
- 1.4 A teacher recorded the mathematics year marks for a grade 9 class. The marks are given as percentages:
 - 45 71 85 65 90 30 80 25 71 35 62 60 54 72 48 55 50 72 83 50 75
 - 1.4.1 Use the ADDENDUM A (attached) to complete the following distribution table:

Marks intervals	Tally	Frequency
20 - 29		
30 - 39		
40-49		
50 - 59		
60 - 69		
70 – 79		
80 - 89		
90 - 99		
Total:		21


(8)

(8) [40]

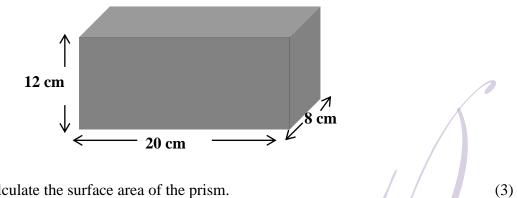
1.4.2 Draw a bar graph on the ADDENDUM A (attached) using information from QUESTION 1.4.1,


QUESTION 2

A(-1;0), B(3;3) and C(9;-5) are the vertices of \triangle ABC. 2.1

2.1.1 Calculate the length of AB.

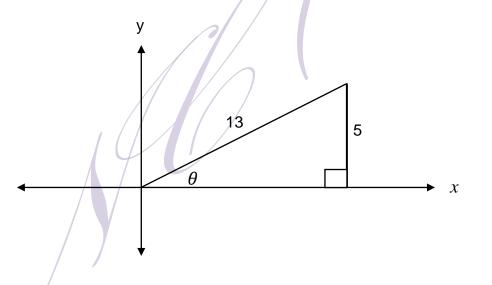
Please turn over



(10501042)

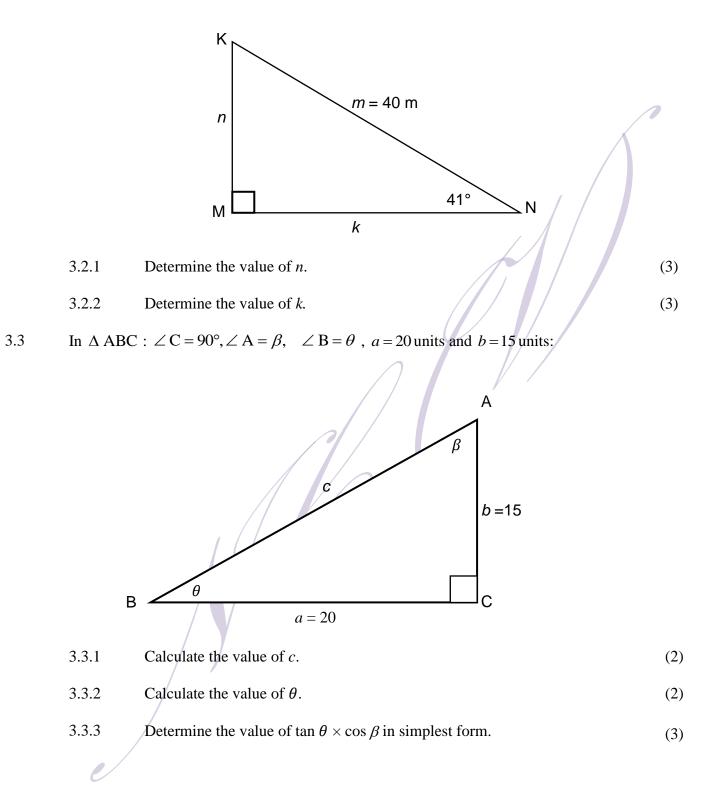
(2)

[30]

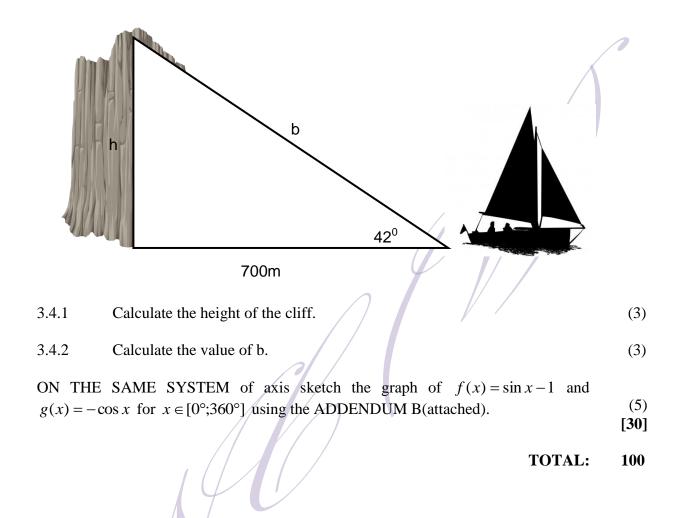

Given below is a rectangular prism with dimensions: $20 \text{cm} \times 8 \text{cm} \times 12 \text{cm}$. 2.3

- 2.3.1 Calculate the surface area of the prism.
- 2.3.2 Calculate the volume of the prism.

QUESTION 3


Given $\sin \theta = \frac{5}{13}$ and $0^{\circ} \le \theta \le 90^{\circ}$. Study the diagram and answer the questions. 3.1

3.1.1	Determine the value of $\cos \theta$.	(3)
3.1.2	Calculate the value of $\sin^2 \theta + \cos^2 \theta$.	(3)


(10501042)

3.2 Given Δ KMN with M = 90°, $\hat{N} = 41^{\circ}$ and m = 40 m:

3.5

3.4 A boat is 700 m away from the foot of a vertical cliff. The angle of elevation from the boat to the top of the cliff is 42° .

FORMULA SHEET

- 1. $A_{square} = l \times l = l^2$
- 2. $A_{rectangle} = l \times w$
- 3. $A_{triangle} = \frac{1}{2}b \times h$
- 4. $A_{circke} = \pi r^2$
- 5. $C = 2\pi r$
- 6. Area of a parallelogram = base \times perpendicular height

7. A_{hexagon} =
$$\frac{3\sqrt{3}}{2}L^2$$

- 8. A_{hexagon} = $\frac{\sqrt{3}}{2}W^2$
- 9. A _{cylinder} = $2\pi r(h+r)$
- 10. Volume = area of base \times perpendicular height
- 11. Total surface area of a triangular prism = (height of prism \times perimeter of base) + 2(area of base)

12.
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

13. $D = \sqrt{(x_2 - x_1)^2 + (y_2)^2}$

14.
$$M = \left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

15. $\theta = \tan^{-1} m$

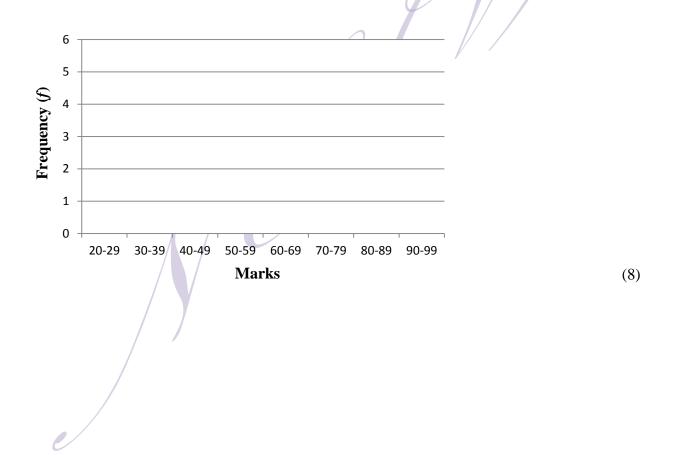
16. $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ or Mean = $\frac{\text{total or sum of all items}}{\text{number of items}}$

17. $R = X_n - X_1$ OR Range = highest value – lowest value

18.
$$\bar{x} = \frac{\sum f_i x_i}{n}$$

19.
$$Q_{j \text{ position}} = \frac{j}{4}(n+1)$$

- 20. Interquartile range = upper quartile lower quartile = $(Q_3 Q_1)$
- 21. Semi-inter quartile range = $\frac{1}{2}$ (upper quartile lower quartile) = $\frac{Q_3 Q_1}{2}$


22.
$$P_{j position} = \frac{j}{100}(n+1)$$

ADDENDUM A EXAMINATION NUMBER:

1.4.1 Complete the following distribution table:

Marks intervals	Tally	Frequency]
20–29			1
30–39			
40–49			
50–59			
60–69			
70–79			
80–89			
90–99]/ / /
Total:		21	(8)

1.4.2 Draw a bar graph on the ADDENDUM using information from QUESTION 1.4.1.

ADDENDUM B	EXAMINATION NUMBER:							

QUESTION 3.5

	0°	90°	help you draw th 180°	270°	300°	360°
n x - 1						
$\cos x$						
ţу		1	1		1	
2						
1		_				
0°		90°	180°		270°	360° ×
-1						
-1			52			
-2						
						1
	/					