

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICS

(First Paper) **NQF LEVEL 2**

XX FEBRUARY 2020

This marking guideline consists of 10 pages.

-2-MATHEMATICS L2 (First Paper)

INSTRUCTIONS AND INFORMATION

- 1. Mathematics lends itself to various methods and alternative answers. Mark all mathematically correct answers.
- 2. The answers in this marking guideline are not exhaustive. Marks are allocated for specific principles and markers must adhere to the mark allocation.
- 3. Carry forward errors; in other words, in questions with more than one part, mark an answer to a later question part according to the answer given for the earlier part, even if it is wrong.
- 4. Marks are allocated per step, but if a student omitted a step and there is evidence or reason that he/she can derive at the next step without calculation, then the mark must still be given to the student.
- 5. Take note that marks have been allocated for simplification.
- 6. Steps must be marked and not only the final answer. Ticks must correspond with the total. Put ticks and crosses neatly and legibly in a red pen only.
- 7. If the answer does not look exactly the same as in the marking guideline, this could be an alternative method or a method not known to you. Please take a moment before you mark to verify the student's answer.
- 8. Do not adjust marks of students to give them a pass mark.

✓ 1 mark √ ½ mark

QUESTION 1

 $(5 \times 1) \qquad (5)$

1.2
$$0,\dot{4}5\dot{3}$$

Let $x = 0,\dot{4}5\dot{3}$
 $1000x = 453,\dot{4}5\dot{3}\sqrt{3}$
 $\therefore 1000x - x = 453\sqrt{3}$
 $\therefore 999x = 453\sqrt{3}$
 $\therefore x = \frac{453}{999}\sqrt{3}$
 $= \frac{151}{333}\sqrt{3}$

(3)

1.3
$$\frac{6x^{4}\sqrt{2x^{8}} - 2\sqrt{8x^{16}}}{\sqrt{10x^{16}}}$$

$$= \frac{6x^{4}\sqrt{2}\sqrt{x^{8}} - 2\sqrt{2\times4}\sqrt{x^{16}}}{\sqrt{2\times5}\sqrt{x^{16}}} \checkmark$$

$$= \frac{6x^{4}\sqrt{2}x^{4} - 4\sqrt{2}x^{8}}{\sqrt{2}\sqrt{5}\sqrt{x^{16}}} \checkmark$$

$$= \frac{6\sqrt{2}x^{8} - 4\sqrt{2}x^{8}}{\sqrt{2}\sqrt{5}x^{8}} \checkmark$$

$$= \frac{\sqrt{2}x^{8}(6-4)}{\sqrt{2}\sqrt{5}x^{8}} \checkmark$$

$$= \frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} \checkmark$$

$$= \frac{2\sqrt{5}}{5} \checkmark$$

(5)

1.4 1.4.1
$$2x^{2}y^{3} \times 3x^{5}y^{-4}$$

$$= 6x^{7}y^{-1} \checkmark$$

$$= \frac{6x^{7}}{y} \checkmark$$
(2)

1.4.2
$$\frac{(-2x^{-2}y^{0}z^{-1})^{2} \times (x^{0}y)^{3}}{(xy^{-4}z^{3})^{-1}}$$

$$= \frac{(-2x^{-2}z^{-1})^{2} \times y^{3}}{(xy^{-4}z^{3})^{-1}} \checkmark$$

$$= \frac{4x^{-4}z^{-2} \times y^{3}}{x^{-1}y^{4}z^{-3}} \checkmark$$

$$= 4x^{-4-(-1)}.z^{-2-(-3)}.y^{3-4} \checkmark$$

$$= 4x^{-3}z \ y^{-1} \checkmark$$

$$= \frac{4z}{x^{3}y} \checkmark$$
(3)

1.4.3
$$\frac{18^{x} \times 8^{x-2}}{9^{x+1} \times 4^{2x-3}}$$

$$= \frac{(2 \times 3 \times 3)^{x} \times (2 \times 2 \times 2)^{x-2}}{(3 \times 3)^{x+1} \times (2 \times 2)^{2x-3}} \checkmark$$

$$= \frac{(2 \times 3^{2})^{x} \times (2^{3})^{x-2}}{(3^{2})^{x+1} \times (2^{2})^{2x-3}} \checkmark$$

$$= \frac{2^{x} \cdot 3^{2x} \times 2^{3x} \cdot 2^{-6}}{3^{2x} \cdot 3^{2} \times 2^{-6}} \checkmark$$

$$= \frac{2^{4x-6} \cdot 3^{2x}}{3^{2x+2} \times 2^{4x-6}} \checkmark$$

$$= 2^{4x-6-(4x-6)} \cdot 3^{2x-(2x+2)}$$

$$= 3^{-2} \checkmark$$

$$= \frac{1}{3^{2}}$$

$$= \frac{1}{9} \checkmark$$
(3)

1.5 1.5.1
$$A_{T} = A_{O} + A_{O} \times \frac{r}{100} \times t$$

$$\therefore A_{T} = A_{O} \left(1 + \frac{r}{100} \times t \right) \checkmark$$

$$\therefore A_{O} = \frac{A_{T}}{\left(1 + \frac{r}{100} \times t \right)} \checkmark$$
(2)

$$A_O = \frac{3000}{\left(1 + \frac{5}{100} \times 4\right)} = 2500 \checkmark \tag{1}$$

1.6.2
$$T_n = a + (n-1)d$$

 $161 = 5 + (n-1)4\checkmark$
 $161 - 5 = 4n - 4\checkmark$
 $160 = 4n$
 $\therefore n = 40\checkmark$ (3)

1.6.3
$$S_{n} = \frac{n}{2} [2a + (n-1)d]$$

$$S_{12} = \frac{12}{2} [2(5) + (12-1)4] \checkmark$$

$$S_{12} = 6[2(5) + (11)4]$$

$$S_{12} = 6(54) = 324 \checkmark$$
(2)

QUESTION 2

2.1 2.1.1 A
2.1.2 D
2.1.3 A
2.1.4 C
2.1.5 C
2.1.6 D

2.2 2.2.1

- (a) False
- (b) True
- (c) False
- (d) False
- (e) False

 $(5 \times 1) \qquad (5)$

2.2.2

$$y = \frac{a}{x} + q$$

$$q = 1 \checkmark$$

$$0 = \frac{a}{-3} + 1$$

$$\frac{a}{3} = 1$$

$$\therefore a = 3\checkmark$$

(2)

2.2.3 Horizontal asymptote: y = 1 \checkmark Vertical asymptote: x = 0 \checkmark

(2)

2.3

х	-3	-2	-1	0	1	2	3
$f(x) = -x^2 + 4$	-5	0	3	4	3	0	- 5
х	-2	-1	0	1	2		
h(x) = 2x	-4	-2	0	2	4		

Mark allocation:

f(x):

Turning point 1; Shape 1; x-intercepts 1

h(x):

Passing through origin 1; Correct points and shape 1

(5)

2.4 2.4.1

½ mark x-intercept; ½ mark y-intercept

½ mark each for end points correctly placed

½ mark open point; ½ mark closed point

2.4.2 Range $y \in (-1\checkmark; 4]\checkmark$ where $y \in R$ (2) [25]

QUESTION 3

3.1.2
$$(x-3y)(x^2+3xy+9y^2)$$

= $x^3 + 3x^2y - 3x^2y + 9xy^2 - 9xy^2 - 27y^3$ \forall \forall \forall (½ mark for 2 correct
= $x^3 - 27y^3$
terms) \forall (2)

3.2 3.2.1
$$9x^3 - 16xy^2$$

= $x(9x^2 - 16y^2)$ \checkmark
= $x(3x - 4y)(3x + 4y)$ \checkmark (2)

3.2.2
$$6x-9+6xy-9y = 6x+6xy+(-9-9y)\sqrt{2}$$
$$= 6x(1+y)-9(1+y)\sqrt{2}$$
$$= (1+y)(6x-9)\sqrt{2}$$
$$= 3(1+y)(2x-3)\sqrt{2}$$
 (2)

(3)

3.2.3
$$4a^{2} - 4a + 1$$

$$= (2a - 1)(2a - 1)$$
(2)

3.3
$$\frac{63x^2y - 7x^2y^3}{7x^2y}$$

$$= \frac{7x^2y(9 - y^2)}{7x^2y} \checkmark (\frac{1}{2} \text{ mark for each factor in numerator})$$

$$= 9 - y^2 \checkmark$$

$$= (3 - y)(3 + y)$$

Note: No mark allocation if candidate factorises. The instruction does not say "factorise".)

3.4 3.4.1
$$x - (x - 2) + 2(3 - x) = 0$$

 $x - x + 2 + 6 - 2x = 0$ \checkmark
 $8 = 2x \checkmark$
 $x = 4 \checkmark$ (2)

3.4.2
$$\left(\frac{x+2}{5} - 5 = -\frac{1-3x}{3}\right) \times LCM$$

$$\therefore \frac{(15)(x+2)}{5} - 5(15) = -\left(\frac{1-3x}{3}\right) \times 15\checkmark$$

$$\therefore \frac{3(x+2)}{1} - 75 = \frac{-1+3x}{1} \times 5\checkmark$$

$$\therefore 3x + 6 - 75 = -5 + 15x\checkmark$$

$$\therefore -12x = 64\checkmark$$

$$\therefore x = \frac{-16}{3}\checkmark$$
(3)

3.4.3
$$(2^{x+1})^2 = (2^2)^3$$
 Alternative:
 $2^{2x+2} = 2^6 \checkmark$ $(2^{x+1})^2 = (2^2)^3$
 $2x + 2 = 6 \checkmark$ $\therefore 2^{2x+2} = 2^6 \checkmark$
 $2x = 4 \checkmark$ $\therefore 2^{2x} 2^2 = 2^6$
 $\therefore x = 2 \checkmark$ $\therefore 2^{2x} = 2^4 \checkmark$
 $2x = 4$
 $\therefore x = 2 \checkmark$ (2)

3.5 3.5.1
$$4 \ge 3 - 8x > -11$$

 $1 \ge -8x > -14\checkmark$
 $\frac{1}{-8} \le \frac{-8x}{-8} < \frac{-14}{-8}\checkmark$
 $-0, 25 \le x < 1, 75\checkmark$

Note: Answer can also be given in fractions in their simplest form. (3)

-9-MATHEMATICS L2 (First Paper)

3.5.2
$$x \in [-0,25;1,75)$$
 for $x \in R$ (½ mark for each correct bracket)
Note: answer can also be given in fractions in their simplest form. (1)

3.6
$$2x = 3y - 4 \text{ eq } 1$$

 $y = x - 3 \text{ eq } 2$

Substitute eq 2 into eq 1

$$2x = 3(x-3) - 4\sqrt{}$$

$$2x = 3x - 9 - 4$$

$$-x = -13\sqrt{ }$$

$$\therefore x = 13 \checkmark$$

Substitute x in eq 2

$$y = 13 - 3 = 10 \checkmark \tag{3}$$

[25]

QUESTION 4

 $(5 \times 1) \qquad (5)$

4.3 4.3.1
$$\frac{10}{100} \times R5600 = R560\checkmark$$

$$R5600 - R560 = R5040\checkmark$$
 (2)

-10-MATHEMATICS L2 (First Paper)

4.3.2 CA from 4.3.1
$$A_{t} = A_{o} \left(1 + \frac{rt}{100}\right)$$

$$A_{t} = 5040 \left(1 + \frac{15(2)}{100}\right) \checkmark$$

$$A_{t} = R6552,00 \checkmark$$
Monthly installments is $\frac{R6552,00}{24months} = R273,00 \checkmark$
(3)

4.3.3
$$A_{t} = A_{o} (1 + \frac{r}{100})^{n}$$

$$5600 = A_{o} (1 + \frac{7}{100})^{2} \checkmark$$

$$A_{o} = \frac{5600 \checkmark}{1.1449} = R4891,26 \checkmark$$
[40]

TOTAL: 100