

higher education \& training

Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICAL LITERACY (Second Paper) NQF LEVEL 4 (10401034)

6 November 2018 (Y-Paper) 13:00-16:00

Drawing instruments will be used.
Calculators may be used.

This question paper consists of $\mathbf{1 0}$ pages and 1 addendum.

TIME: 3 HOURS

MARKS: 150

INSTRUCTIONS AND INFORMATION

1. Answer ALL the questions.
2. Read ALL the questions carefully.
3. Number the answers according to the numbering system used in this question paper.
4. Answer QUESTION 1.2.3 on the ADDENDUM.
5. Clearly show ALL calculations, diagrams, graphs, et cetera used in determining the answers.
6. Approved calculators may be used, unless otherwise stated.
7. Round off the answers to TWO decimal places, unless otherwise stated.
8. Use $\pi=3,14$. Learners will be penalised if any other value is used.
9. Drawing instruments including rulers, pairs of compasses and protractors may be used.
10. Diagrams are not necessarily drawn to scale.
11. Start each question on a NEW page.
12. Write neatly and legibly.

QUESTION 1

1.1 A TVET College wants to hire an extra photocopy machine. The graph below shows the monthly costs for three different photocopy machines (Type A, Type B and Type C).

1.1.1 Determine the total cost for 12000 copies if type B is being used.
1.1.2 Calculate the difference in costs between type A and type C if 2000 copies are to be made.
1.1.3 Explain how the costing of type C differs from the other two types of
machines.
1.1.4 Determine the cost for 2000 copies when using type A.
1.1.5 Which type of photocopy machine will be the cheapest if less than 4000 copies are made?
1.1.6 Which type of photocopy machine will be the most expensive if between 4000 and 10000 copies are made?
1.1.7 Explain why type A and type B do not start at zero (0) on the vertical axis.
1.2 Private accommodation costs for students at a TVET college are as follow:

- Package A: R1 500 deposit and a monthly payment of R900
- Package B: R1 100 monthly

The cost of the accommodation is for 10 months only
1.2.1 Calculate the total accommodation cost for 6 months if a student chooses package A.
1.2.2 Write down a formula to determine the accommodation costs for any number of months for Package A, in the form:

Accommodation costs in rand $=\ldots$
1.2.3 Draw a line graph for package A that shows the total cost to the number of months on the ADDENDUM (attached). The graph for package B is already drawn.
1.2.4 What does the intersection of the two graphs mean?

QUESTION 2

2.1 Johnny examines two containers used in his company. The manufacturer claims that both containers can hold a capacity of 5 litres. Container A is in the shape of a cube with a side length of $17,1 \mathrm{~cm}$ and container B is in the shape of a rectangular prism with a length of $14,8 \mathrm{~cm}$, a width of 10 cm and a height of 34 cm .

CONTAINER B:

Note:
Volume $=$ length \times breadth \times height
1 litre $=1000 \mathrm{~cm}^{3}$
Surface area $=2$ (length \times width $)+2($ length \times height $)+2($ width \times height $)$
2.1.1 Prove, by showing all calculations, that each one of the containers can hold a capacity of 5 litres.
2.1.2 Calculate the surface area of Container A.
2.1.3 Calculate the surface area of Container B.
2.1.4 Which one of the two containers will require less material for production?
2.1.5 John brings in a regular cylindrical 5 litre tin which has a height (h) of 24 cm , as shown below.

Calculate the diameter of the tin using the following information:
Volume $=\pi \times \mathrm{r}^{2} \times \mathrm{h}$
Use $\pi=3,14$ and where $\mathrm{r}=$ radius
h = height
2.2 The company for which Johnny is working has two branches, one in Cape Town and another one in George.

Use the map to answer the questions.

2.2.1 Determine the straight-line distance in mm (as the crow flies) between Cape Town and George.
2.2.2 Use the bar scale to determine the actual distance between Cape Town and George.
2.2.3 Calculate, in hours, how long it will take to drive a vehicle at $115 \mathrm{~km} / \mathrm{h}$ from Cape Town to George.

Use the formula: speed $=\frac{\text { distance in } \mathrm{km}}{\text { time in hours }}$
2.3 The diagram below shows a chest of drawers.

The total height of the chest drawer is $0,95 \mathrm{~m}$; and each drawer is $0,20 \mathrm{~m}$.

2.3.1 Determine the height in cm of the base, marked with X .
2.3.2 Explain why the measurements of a cabinet are usually given in millimetres.
2.3.3 Choose the correct answer from those given in brackets. Write only the answer next to the question number.

The actual chest drawer in reality is (one/two/three) dimensional.
2.3.4 Justify your choice in QUESTION 2.3.3.

QUESTION 3

3.1 Jamy wants to expand her catering business to a bakery. Her sales forecast in rand is shown in the table below.

	YEAR 1	YEAR 2
Unit Sales		
Baked goods	17620	21144
Sweets and Pastries	9400	12220
Catering	15	20
Price per Unit		
Baked goods	4	4
Sweets and pastries	3,15	B
Catering	1500	1500
Sales		
Baked goods	70480	84576
Sweets and pastries	29610	38493
Catering	22500	30000
TOTAL SALES	122590	153069
Direct cost per Unit	-	
Baked goods	2,50	2,50
Sweets and pastries	1,75	1,75
Catering	A	800
Direct Cost		
Baked goods	44050	52860
Sweets and pastries	16450	21385
Catering	12000	16000
TOTAL DIRECT COST	72500	C
\square		
Gross profit	50090	D
Gross profit \%	69,0\%	E

3.1.1 How is the amount of R70 480 calculated?
3.1.2 Write, as a ratio, in its simplest form the number of catering events of year 1 to that of year 2 .
3.1.3 The direct total cost of catering for year 1 is R12000. What is the direct cost per unit for one catering event, the value of A?
3.1.4 Determine the average price per unit sold of sweets and pastries, the value of B.
3.1.5 Determine the value of C and D.
3.1.6 Jamy's friend argues that because the total sales are higher than that of year 1 the percentage gross profit will differ by more than 2%. By first calculating the value of E , determine if her friend is correct or not.

Formula: Gross profit $\%=\frac{\text { Profit }}{\text { Total direct cost }} \times 100 \%$
3.1.7 Prove, by showing ALL calculations, that there is a 20% planned percentage increase in the number of baked goods to be sold from year 1 to year 2 .
3.1.8 Name any TWO expenses to consider for the bakery business.
3.2 Jamy is considering a short-term loan from a local bank to expand her bakery business. The following loan repayment table is given to her. The four loan options given are R 12000 , R 15000 , R30 000 and R 50000.

Use the table to answer the questions.

Loan Repayment Table				
Loan Amount	R12 000	R15 000	R30 000	R50 000
Loan term (months)	36	42	48	60
Fixed monthly repayment	R677	R758	R1 319	R1 948
Monthly instalment as a \% the loan amount	$5,6 \%$	$5,1 \%$	$4,4 \%$	Y
Total repayment	R24 372	R31 836	X	Z

3.2.1 The loan term is normally given in months, express the loan term for the loan amount of R15 000 in years only.
 is calculated.
3.2.3 Jamy claims that the total repayment will be more than double the original amount on a loan of R30 000. Determine the value of X to verify if her statement is correct.
3.2.4 Determine the value of Y, the monthly instalment, as a percentage of the loan amount.
3.2.5 Calculate the value of Z and hence determine how much interest will be paid on a loan of R50 000 .

QUESTION 4

The two sets of data below show the weight (in kg) of rugby players in a game between South Africa and New Zealand. The weights of players numbered 1 to 15 are shown in the table below:

Player Number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
South Africa (Springboks)	116	114	121	117	120	103	114	114	90	97	94	101	95	90	90
New Zealand (All Blacks)	120	103	120	117	122	108	108	112	83	91	96	106	95	91	96

4.1 What is the weight, in pounds, of the heaviest South African player?

1 pound $=0.4536$ kilogram
4.2 What is the modal value of the weight of the South African team?
4.3 The range for the weights of the South African team is 31 kg . Determine the range for the weights of the New Zealand team.
4.4 The median weight for the New Zealand team is 106 kg . Determine the median weight for the South African team.
4.5 Evaluate if there is a significant difference in the mean (average) weights between the two teams.
4.6 If a player is selected at random, what is the probability of selecting a player that weighs 96 kg in the New Zealand team?

Write your answer as a percentage.
4.7 If a player is selected at random what is the probability of selecting a player with a weight of more than a 100 kg in the South African team?

Write your answer in its simplest form.
4.8 After the game 50 people from the crowd were chosen to take part in a competition. The table below shows the team that they supported during this game with some of them remaining neutral.

	South Africa	Neutral	New Zealand	Total
Male	10	A	18	B
Female	13	5	2	20
Total	\mathbf{C}	7	20	50

4.8.1 Determine the value of A, B and C
(3×2)
4.8.2 If a person from the competition is chosen at random, what is the probability of choosing a female?
4.8.3 If a person from the competition is chosen at random, what is the probability of choosing a male that supports South Africa?
4.8.4 If a female from the competition is chosen at random, what is the probability of choosing someone who supports New Zealand?

TOTAL: 150

ADDENDUM : QUESTION 1.2.3

CENTRE NUMBER:

