

higher education & training

Department: Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICAL LITERACY (First paper) NOF LEVEL 4

16 November 2020

Symbol	Explanation
М	Method
MA	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG/RD	Reading from a table/Reading from a graph/drawing
F	Choosing correct formula
SF	Substitution in formula
R/J	Reasoning / Justification
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
MF	Manipulating formula
Е	Explanation

This marking guideline consists of 10 pages.

Copyright reserved

Please turn over

-2-MATHEMATICAL LITERACY L4 (First paper)

QUESTION 1 [30] *Do not deduct marks if the R or the % sign is omitted.			
Question	Solution	Explanation	
1.1	$60 - (\sqrt{16} + 2 \times 4) \div 3$ = 60 - (4 + 8) $\checkmark \div 3$ = 60 - 12 $\checkmark \div 3$ = 60 - 4 \checkmark = 56 \checkmark	BODMAS 1 A bracket (4+8) 1 A -12 1 A -4 1A	
		(4)	
1.2	$\frac{12}{14}; \frac{3}{7}; \frac{2}{3}$ $= \frac{36}{42}; \frac{18}{42}; \frac{28}{42} \checkmark$ Ascending order: $\frac{18}{42}; \frac{28}{42}; \frac{36}{42}$	1 M LCD	
	$\therefore \frac{3}{7}\checkmark; \frac{2}{3}\checkmark; \frac{12}{14}\checkmark$	3A - correct ascending order (4)	
1.3	$0,375 \times 1000 \checkmark$ = 375 \screw grams $375 \times 1000 \checkmark$ = 375 000 \screw milligrams	1 M ×1 000 1 C 375 1 M ×1 000 1 C 375 000	
	OR		
	0,375×1000 000 ✓ ✓ ✓ = 375 000 ✓ milligrams	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
1.4	$140\% = \frac{140}{100}$ $= \frac{7}{5}\checkmark$ $= 1\frac{2}{5}\checkmark$	1 MA 1 MA	
		(2)	

-3-MATHEMATICAL LITERACY L4 (First paper)

1.5	Thursday 15:37 to Monday 03:37 $=$ 3 days 12 hoursMonday 03:37 to Monday 10:42 $=$ 7 hours and 5 min	1 M 1 M
	Total time passed = 3 days 19 hours 5 min \checkmark	1 A
	OR	
	Thursday 15:37 to Sunday 15:37 = 3 days \checkmark	1 M
	Sunday 15:37 to Monday 10:42:	
	34:42	
	$\frac{-15:37}{19:05}$	1 M
	Total time passed = 3 days 19 hours 5 min \checkmark	1 A
		(3)
1.6	Volume of sphere = $\frac{4}{2}\pi r^3$	
	$= \frac{4}{3} \times 3,14 \checkmark \times (5,7)^{3} \checkmark$ = 775,34 cm ³ \checkmark	2 SF 1 A
		(3)
1.7		
	$\Psi = \frac{9755}{0,13} \checkmark \checkmark$	2 MA
	∴= 5038,46 ✓	1 A
		(3)
1.8	Speed = $\frac{\text{distance}}{\text{time}}$ \checkmark	1 MF
	$-\underline{5} \checkmark$	1C + 1C
	$-0,21028 \checkmark$ -23.78 km/h \checkmark	1A
	-23,70 KII/ II •	(4)

-4-MATHEMATICAL LITERACY L4 (First paper)

1.9	$4 \times 100g$ for R22,99:		
	Cost per gram = $\frac{R22,99}{400g} = R0,0575 / g$ \checkmark	1 A	
	3×175 g for R26,99:		
	Cost per gram = $\frac{R26,99}{525g} = R0,0514/g$ \checkmark	1 A	
	Therefore the 3×175 g for R26,99 is more cost effective	1 A	(3)

QUESTION 2 [30] *Penalise once for incorrect unit unless stated			
Question	Solution	Explanation	
2.1	Area = $h \times w$ 2,25 \checkmark = 2,5 \checkmark × w	2 SF	
	$w = \frac{2,25}{2,5} \checkmark$	1 MF	
	$w = 0,9 \mathrm{m}$	1 A (4)	
2.2	Area wall without windows and doors = $h \times w$ = 20×44 = $80 \checkmark m^2$ Area door = $2,25 \text{ m}^2$ Area windows = $3 \times h \times w$ = $3 \times 1, 2 \times 0, 54$ = $1,8 \checkmark m^2$ Therefore, area of front wall = $80 - 2,25 - 1,8 \checkmark$ = $75,95 \text{ m}^2 \checkmark$	1 SF 1 A 1 MA 1 A 1 M 1 A with unit (6)	
2.3	Total area = width × (height of front wall + height of back wall) = $8 \times (4 + 3, 2) \checkmark$ = $57,6 \checkmark m^2$ Area for 2 walls = $2 \times 57,6\checkmark$ = $115,2 \checkmark m^2$	1 SF (all must be correct) 1 A 1 M 1 A (4)	

-5-MATHEMATICAL LITERACY L4 (First paper)

2.4	Circumference = $2 \times \pi \times r$ $4,7728\checkmark = 2 \times 3,14 \times r$ $r = \frac{4,7728\checkmark}{2 \times 3,14\checkmark}$ = 0,76 m✓ = 76 cm✓	1 SF 2 MF 1 A 1 C (5)
2.5	Area = $\pi \times r^2$ = 3,14×(0,76) ² \checkmark = 1,813 \checkmark	1 SF (CA Q2.4) 1 CA
	$\therefore \text{ Total area} = 1,813 \times 2$ $= 3,63 \checkmark \text{ m}^2$	1 CA (3)
2.6	Number of litres, one coat = $\frac{251,52\checkmark}{8\checkmark}$ =31,44 $\checkmark\ell$ Number of litres, two coats = 2 × 31,44 = 62,88 $\checkmark\ell$ = 63 $\checkmark\ell$	2 M 1 A 1 MA 1 R (5)
2.7	Total cost of paint: $2 \times R749 = R1 \ 498\checkmark$ $2 \times R279 = R558\checkmark$ Total cost = R1 498 + R558 = R2 056\checkmark	1 MA 1 MA 1 A (3)

QUESTION 3 [30] * (DO NOT PENALISE IF THE R IS OMITTED)				
Question	Solution	Explanation		
3.1	3.1.1	D✓	1 A (1)	
	3.1.2	F✓	1 A (1)	
	3.1.3	A✓	1 A (1)	
	3.1.4	В√	1 A (1)	
	3.1.5	C✓	1 A (1)	

-6-MATHEMATICAL LITERACY L4 (First paper)

3.2	3.2.1	On 10/06/2019✓ at 14:36✓ Accept: 10 June 2019	2 A (2)
	3.2.2	With a # ✓ Accept the word hashtag	1 A (1)
	3.2.3	Zero rated items are exempt from VAT✓ Also accept VAT exclusive	1 A (1)
	3.2.4	She paid by card ✓ Accept: Electronic payment	1 A (1)
	3.2.5	Weight of lean mince = $\frac{52,73\checkmark}{115,75\checkmark}$ = 0,455 \checkmark = 0,5 \checkmark kg	2 MA 1 A 1 R (4)
	3.2.6	VAT inclusive items: Sandwich white bread R14,99 24 litres recyclable R0,62 Sticky ribs R170,23 \checkmark Lean beef mince R52,73 24 litres recyclable R0,62 Total R239,19 \checkmark Taxable value = $\frac{239,19\checkmark \times 100\checkmark}{115\checkmark}$ = 207,99	1 M – adding VAT inclusive items 1 A 3 MA (5)
3.3	3.3.1	A monthly deduction from an account holder's bank account by a third party but with the consent of the account holder (Accept other correct responses)	1 E (1)
	3.3.2	Difference = R170 887,43 - R116 713,39 \checkmark = R54 174,04 \checkmark	1 M 1 A (2)

-7-MATHEMATICAL LITERACY L4 (First paper)

3.3.3	1 May 2019 to 1 May 2031 = 12 years \checkmark Number of months = 12 years \times 12 months = 144 months \checkmark	1 MA – 12 years 1 MA – 144 months	
	1 May 2031 to 1 November $2031 = 6$ months \checkmark	1 MA – 6 months	
	Total number of months = $144 + 6 \checkmark = 150$	1 M - 144 +6	(4)
3.3.4	Total contribution = $R483,29 \times 150\checkmark$ = $R72493,50\checkmark$	1 M 1 A	(2)
3.3.5	New monthly contribution = $R483,29 \times 107,9\%$ = $R521,47$	1 M 1 A	(2)

QUESTION 4 [30] * (DO NOT PENALISE IF THE R IS OMITTED)				
Question	Solution		Explanation	
4.1	4.1.1	Graph A - Bakkie✓ Graph B - SUV ✓	2 RG (2)	
	4.1.2	R 1 500 ✓ ✓	2 RG (2)	
	4.1.3	R600√ ✓	2 RG (2)	
	4.1.4	Total travel $\cot \sqrt{x} = \frac{3000\sqrt{x}}{\text{Number of students}}$ Or Number of students \sqrt{x} total travel $\cot \sqrt{x} = \frac{3000\sqrt{x}}{x\sqrt{x}}$	3 A	
		Or $x\checkmark \times y\checkmark = 3\ 000\checkmark$	(3)	

-8-MATHEMATICAL LITERACY L4 (First paper)

	4.1.5	Total travel cost \checkmark = R1 500 \checkmark	2 A
		Or	
		$y\checkmark = 1500\checkmark$	
	4.1.6	(2√; 1 500√)	2 A
	4.1.7	Indirect relationship	1 A
		The number of students and the total travel cost has a constant product \checkmark	1 E
		Or	
		As the number of students increases by a factor of 3 000, the total travel cost decreases by the same factor \checkmark	
	4.1.8	Constant relationship 🗸	1 A
		As the number of students increases, the total travel cost stays the same \checkmark	1 A
	4.2.1	·	
16 000		WAGES FOR THE TWO OPTIONS	
14 000		✓ Line	
12 000		OPTION A	
면 면 드 10 000			
ber aouth 000 8 000		✓ ✓ Line	
000 9 ut eamed	· ·		
4 000	/		
2 000	1		
2000	/		
0	5	10 15 20 25 30 Number of days worked	
Labelli	ng each graph		
~ .			

Copyright reserved

-9-MATHEMATICAL LITERACY L4 (First paper)

4.2.2	After 20 days ✓ ✓	1 RG (1)
4.2.3	The graph does not start at $(0; 0) \checkmark$ The variables do not have a constant ratio \checkmark	1 E 1 E (2)

QUESTION 5 [30] * (DO NOT PENALISE IF THE % SIGN IS OMITTED)					
Question	Solution	Explanation			
5.1.	$A = 32\ 062\checkmark\checkmark$	2 MA			
	B =702 383 ✓ ✓	2 MA			
		(4)			
5.2	2016 🗸 🗸	2 RT (2)			
5.3	There was a general increase in enrolments ✓ ✓ Accept any other appropriate answer	2 E/RT			
		(2)			
5.4	Enrolment fluctuated ✓ ✓ Or	2 E/RT			
	Enrolment was $\operatorname{erratic} \checkmark \checkmark$	(2)			
5.5	Range = $62\ 359 - 13\ 642 \checkmark$ = $48\ 717\checkmark$ (Answer only full marks)	1 M 1 A (2)			
5.6	13 642 ✓ 19 000	1 A Ascending order			
	19 825 20 533 Median ✓ 20 799	1 MA position of median			
	23 160 62 359				
	Median = 20 533✓	1 A (3)			

-10-MATHEMATICAL LITERACY L4 (First paper)

5.7	$Mean = \frac{179 \ 318\checkmark}{7\checkmark} = 25 \ 616,86\checkmark = 25 \ 616\checkmark$		1 A 179 318 1 M ÷ 7 1 A 1 R rounding down	(4)
5.8	Percentage decrease = $\frac{705397 - 737880\checkmark}{737880\checkmark} \times 100\checkmark$ $= -4,40\%\checkmark$ Therefore, percentage decrease is 4,4% \checkmark		3 MA 1 A 1 A	0
				(5)
5.9	5.9.1	CBMT enrolments: 2010-2016✓ (Accept appropriate alternatives)		(1)
	5.9.2	Although the number of years is continuous√, the number of students enrolled is discrete√. Broken line graphs represent discrete data. (Accept appropriate alternatives)	2R/J	(2)
	5.9.3	2012√ Outlier√	1 RG 1 R/J	(2)
	5.9.4	The vertical/dependant/y axis does not start at zero. ✓	1 R/J	(1)

TOTAL: 150