Department:
Higher Education and Training REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE (VOCATIONAL)

MATHEMATICAL LITERACY

(First paper)
NQF LEVEL 2

23 November 2020

SYMBOL	
M	Method
MA	Method with accuracy
CA	Consistent accuracy
A	Accuracy
C	Conversion
S	Simplification
RT/RG/RD/RM	Reading from a table/graph/drawing/document/map
F	Choosing correct formula
SF	Substitution in formula
MF	Manipulation of formula
R/J	Reasoning/Justification
P	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
E	Explanation

This marking guideline consists of 8 pages.
(First paper)

QUESTION 1

(Do not deduct marks if the ' R '-sign is omitted. If the answer is correct, allocate the mark.)

QUESTION	SOLUTION	EXPLANATION

1.1	1.1 .1	$1 / 2(9-1)+\sqrt{49}$ $=1 / 2(8)+7 \checkmark$ $=4+7$ $=11 \checkmark$ $($ answer only 1 mark)	1 S	

| 1.1 .2 | $4^{2} \times 2+8$
 $=16 \times 2+8$
 $=32 \checkmark+8$
 $=40 \checkmark$
 (answer only 1 mark) | 1 S | |
| :--- | :--- | :--- | :--- | :--- |

1.2	$5500 \mathrm{~g} \div 1000 \checkmark$ $=5,5 \checkmark \mathrm{~kg}$ (answer only full marks)	1 M 1 A	(2)

1.3	18 35 $\times 100 \checkmark$ $=51,428 \checkmark \%$ Rounded off to $51 \checkmark \%$	1 M	
	1 A	(3)	

1.4	1.4.1	14:30 \checkmark	1A	(1)
	1.4.2	$\begin{array}{r} 14: 30 \checkmark \\ -\underline{08: 00} \checkmark \\ \underline{06: 30} \end{array}$ The duration is 6 hours and 30 minutes. \checkmark OR $\begin{aligned} & 08: 00-14: 00=6 \text { hours } \checkmark \\ & \text { 14:00-14:30 }=30 \text { minutes } \checkmark \end{aligned}$ The duration is 6 hours and 30 minutes. \checkmark (Or any other suitable method)	2 M 1 A	(3)

1.5	1.5.1	$\begin{aligned} & \hline \text { Red }: \\ & 1: \text { green } \\ & 5: \\ & 5: \text { green } \\ & \text { green }=4 \times 5 \checkmark \\ & \quad=20 \checkmark \text { litres } \\ & \text { (answer only full marks) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	(2)
	1.5.2	5ℓ red $+20 \ell \checkmark$ green $=25$ litres yellow \checkmark (answer only full marks)	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	(2)

| 1.5 .3 | R255 $\because \div 5 \checkmark$
 $=\mathrm{R} 51 \checkmark$ per ℓ | 2 M
 1 A | (3) |
| :--- | :--- | :--- | :--- | :--- |

1.6	$\frac{12}{100} \times$ R3 550 $=$ R426,00 \therefore R3 550 - R426,00 \checkmark $=R 3124,00 \checkmark$	OR$\frac{88}{100} \checkmark \times$ R3 550 $=$ R3 $124,00 \checkmark$ 		2 M	

1.7		2A	(2)

1.8	1.8 .1	$\frac{1}{10} \times 100 \checkmark$ $=10$ red marbles \checkmark (answer only full marks)	1 M 1 A	(2)

| 1.8 .2 | $1 / 2$ of $100=50 \checkmark$ blue marbles
 Therefore $100-10-50 \checkmark$
 $=40 \checkmark$ yellow marbles
 Or | 2 M | |
| :--- | :--- | :--- | :--- | :--- |
| | $\frac{4}{10} \checkmark \times 100 \checkmark$
 $=40 \checkmark$ marbles | 1 A | |

QUESTION 2

(Do not allocate marks for units, unless stipulated)

2.1	2.1.1	Right angled triangle \checkmark Accept: triangle	1A	(1)
	2.1.2	Rectangular prism \checkmark	1A	(1)
	2.1.3	$\begin{aligned} \mathrm{AC} & =\sqrt{\mathrm{AB}^{2}+\mathrm{BC}^{2}} \\ & =\sqrt{4^{2}+4^{2}} \checkmark \\ & =\sqrt{32} \checkmark \\ & =5,66 \checkmark \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1 \mathrm{SF} \\ & 1 \mathrm{~A} \\ & 1 \mathrm{R} \end{aligned}$	(3)
	2.1.4	$\begin{aligned} \mathrm{A} & =\left(3,14 \times 1^{2}\right)^{\checkmark} \div 2 \checkmark \\ & =1,57 \checkmark \mathrm{~m}^{2} \checkmark \end{aligned}$	$\begin{array}{\|l} \hline 1 \mathrm{SF} \\ 1 \mathrm{M}(\div 2) \\ 1 \mathrm{~A} \\ 1 \mathrm{U} \\ \hline \end{array}$	(4)

| 2.1 .5 | $\mathrm{V}=1 \times \mathrm{b} \times \mathrm{d}$
 $=5 \times 3 \checkmark \times 1,5 \checkmark$
 $=22,5 \checkmark \mathrm{~m}^{3} \checkmark$ | 1 SF
 1 A | |
| :--- | :--- | :--- | :--- | :--- |

	2.1 .6	$\mathrm{C}=\pi \mathrm{m}$ $\mathrm{C}=3,14 \times 3 \checkmark$ $=9,42 \checkmark \mathrm{~m}$	1 SF 1 A	(2)
 2.2 2.2 .1 $\mathrm{C} 2 \checkmark \checkmark$ 2RM (2) 2.2 .2 Baton Rouge \checkmark Accept: Baton 1 RM (1)				
\begin{tabular}{\|l	l	l	c	}
\hline				
\end{tabular}				
\begin{tabular}{\|l	l	l	}	
\hline
\end{tabular} | | | | |

	2.2.5	$\begin{aligned} & 1 \mathrm{~cm}=50 \mathrm{~km} \\ & 3,2 \mathrm{~cm}=? \mathrm{~km} \\ & \begin{aligned} \text { Distance } & =3,2 \checkmark \times 50 \checkmark \\ & =160 \checkmark \mathrm{~km} \end{aligned} \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \mathrm{M} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	(3)
	2.2.6	Monroe ${ }^{\text {V }}$	1RM	(1)
2.3	2.3.1	$7 \checkmark$	1RD	(1)
	2.3.2	$6 \checkmark$	1RD	(1)
	2.3.3	Bluer	1RD	(1)

	2.3 .4	To warn vehicles that travel behind the trailer when the driver brakes or indicates to turn left or right. $\checkmark \checkmark$ (Any other reasonable answer.) (TWO marks for ONE reason)	2R/J	(2)
				[30]

QUESTION 3

(Do not deduct marks if the ' R '-sign is omitted. If the answer is correct, allocate the mark.)

	3.1.4	Get a part-time job. Ask for donations from family and friends. \checkmark (Any other logical/reasonable suggestion)	1R/J	(1)
3.2	3.2.1	Till Slip/Receipt/invoice \checkmark	1RT	(1)
	3.2.2	Ben Stevens \checkmark	1RT	(1)
	3.2.3	$A=\frac{100 \checkmark}{115 \checkmark} \times \mathrm{R} 127,40=\mathrm{R} 110,78 \checkmark$	$\begin{aligned} & 2 \mathrm{M} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	(3)
	3.2.4	$\begin{aligned} \mathrm{B} & =\text { R127,40-R110,78 } \\ & =\text { R16,62 } \end{aligned}$ OR $\mathrm{B}=\frac{15}{115} \checkmark \times \mathrm{R} 127,40=\mathrm{R} 16,62 \checkmark$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{CA} \\ & \\ & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	(2)
	3.2.5	$\begin{aligned} & \mathrm{C}=\mathrm{R} 200-\mathrm{R} 127,40 \checkmark \\ &=\mathrm{R} 72,60 \checkmark \\ & \text { (Answer only full marks) } \end{aligned}$	$\begin{aligned} & 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	(2)

3.3	3.3.1	SAVINGS DEP Date \qquad 25 June 2019 Name Danny West Account Number \qquad 16521870	IT CASH CHECKS Subtotal Less Cash TOTAL 1 mar	$1400{ }^{\vee}$ 1400 	00 00 ated	5A	(5)
3.3.2		$\begin{aligned} & \text { R1 } 400 \div \mathrm{R} 100=14 \checkmark \\ & \text { Thus } \quad \text { R8,07 }+\mathrm{R} 1,82(14) \checkmark \\ & =\mathrm{R} 8,07+\mathrm{R} 25,48 \\ & =\mathrm{R} 33,55 \checkmark \end{aligned}$				$\begin{aligned} & \hline 1 \mathrm{~A} \\ & 1 \mathrm{SF} \\ & \\ & 1 \mathrm{CA} \end{aligned}$	(3)
							[30]

QUESTION 4

(Do not deduct marks if the ' R '-sign is omitted. If the answer is correct, allocate the mark.)

4.1	4.1.1	A: B: C: D:	$\begin{aligned} & \text { R50 } \times 1 \checkmark \\ & =\text { R } 50 \checkmark \\ & \text { R } 50 \times 2 \checkmark \\ & =\text { R } 100 \checkmark \\ & \text { R150 } \div \text { R } 50 \checkmark \\ & =3 \text { tickets } \checkmark \\ & \text { R } 400 \div \text { R } 50 \checkmark \\ & =8 \text { tickets } \checkmark \end{aligned}$	$\begin{aligned} & \text { 1S } \\ & \text { 1A } \\ & \text { 1SF } \\ & \text { 1A } \\ & \text { 1SF } \\ & 1 \mathrm{~A} \\ & \\ & \text { 1SF } \\ & \text { 1A } \\ & \hline \end{aligned}$	
		(An	wers only full marks)	(4×2)	(8)
	4.1.2	R20	$0 \checkmark \checkmark$	2MA	(2)
	4.1.3		$\begin{aligned} & \checkmark \div 10 \checkmark \\ & 5 \checkmark \text { per lap } \end{aligned}$	$\begin{aligned} & 2 \mathrm{MA} \\ & 1 \mathrm{~A} \\ & \hline \end{aligned}$	(3)
	4.1.4	$\begin{aligned} & 4 \text { tic } \\ & \text { R20 } \\ & =\mathrm{R} \end{aligned}$	$\text { kets for } 1 \text { race (Rambo and his } 3 \text { friends) }=\text { R200 }$ \qquad $0 \times 5 \text { races } \checkmark$ $000 \text { v }$	(4.1.2)	(3)

	4.1 .5	Dependent: Cost in Rand \checkmark Independent: Number of tickets \checkmark	2 A	(2)

| 4.1 .6 | Direct proportion \checkmark
 As the number of tickets increases \checkmark
 the same proportion \checkmark | 1 A
 $2 \mathrm{R} / \mathrm{J}$ | (3) |
| :--- | :--- | :--- | :--- | :--- |

QUESTION 5

(Do not deduct marks if the ' R ' sign is omitted. Full marks answer only.)

5.1.	5.1 .1	$5 \mathrm{~km} / \mathrm{h}$ and $97 \mathrm{~km} / \mathrm{h} \checkmark$	2 RT	(2)

	5.1 .2	97 $5 \checkmark$	71	70	65	65	64	64	\checkmark	62	60	59	57	56	50	2 A		(2)

5.1 .3	mean $=\frac{97+71+\cdots+16}{14} \checkmark$ $=\frac{845}{14} \checkmark$ $=60,36 \mathrm{~km} / \mathrm{h} \checkmark$	1 MA $1 \mathrm{~A}(\mathrm{sum})$	$1 \mathrm{CA}(2$ decimals $)$	(3)

	5.1.5	mode $=64 \mathrm{~km} / \mathrm{h} \checkmark$ and $65 \mathrm{~km} / \mathrm{h} \checkmark \quad 12$					(2)
	5.1.6	$\begin{aligned} \text { Range } & =97 \checkmark-5 \checkmark \\ & =92 \mathrm{~km} / \mathrm{h} \checkmark \end{aligned}$					(3)
	5.1.7	Median \checkmark, because of the 2 outliers the mean is not appropriate and the mode does not consider all values in the data set. \checkmark			1A 1R/J		(2)
	5.1.8	Yes \checkmark, the average speed against all central tendencies are above the speed limit \checkmark			$\begin{array}{\|l\|} \hline 1 \mathrm{~A} \\ 1 \mathrm{R} / \mathrm{J} \\ \hline \end{array}$		(2)
5.2	5.2.1	$\begin{aligned} & \hline \text { INTERVAL } \\ & \text { IN RAND } \\ & \hline \end{aligned}$	TALLY ${ }^{\text {F }}$ FREQUENCY			$\begin{aligned} & \text { 2RT } \\ & \text { 2RT } \\ & \text { 2RT } \\ & \text { 1A } \end{aligned}$	
		0-399	IIII	4			
		400-799	I\#1 IV	6			
		800-1 199	$\stackrel{1111 \checkmark}{ }$	4			
		1200-1499	$1 \checkmark$	1			
			TOTAL	15			
		Each tally and corresponding frequency must be correct for 2 marks per line					(7)
	5.2.2	Pillow fight \checkmark				1RT	(1)
	5.2.3	$\text { Coin toss } \checkmark$				1RT	(1)
	5.2.4	$\begin{aligned} & 154+678+795+946+444+1240+587+198+1128+309+ \\ & 605+469+888+912+394 \checkmark=\text { R } 9747 \checkmark \end{aligned}$ (Answers only full marks)				$\begin{aligned} & \hline 1 \mathrm{M} \\ & 1 \mathrm{~A} \end{aligned}$	(2) $[30]$

TOTAL: 150

